Fluid-solid phase transitions in three-dimensional complex plasmas under microgravity conditions

被引:63
作者
Khrapak, S. A. [1 ,2 ]
Klumov, B. A. [1 ,2 ]
Huber, P. [1 ]
Molotkov, V. I. [2 ]
Lipaev, A. M. [2 ]
Naumkin, V. N. [2 ]
Ivlev, A. V. [1 ]
Thomas, H. M. [1 ]
Schwabe, M. [1 ]
Morfill, G. E. [1 ]
Petrov, O. F. [2 ]
Fortov, V. E. [2 ]
Malentschenko, Yu. [3 ]
Volkov, S. [3 ]
机构
[1] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany
[2] Joint Inst High Temp, Moscow 125412, Russia
[3] Yuri Gagarin Cosmonaut Training Ctr, Star City 141160, Russia
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 06期
基金
欧洲研究理事会; 俄罗斯基础研究基金会;
关键词
BOND-ORIENTATIONAL ORDER; RANDOM CLOSE PACKING; STRUCTURAL-PROPERTIES; DUST PARTICLES; CRYSTAL-NUCLEATION; COULOMB-CRYSTAL; YUKAWA SYSTEMS; CRYSTALLIZATION; CHARGE; MODEL;
D O I
10.1103/PhysRevE.85.066407
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Phase behavior of large three-dimensional (3D) complex plasma systems under microgravity conditions onboard the International Space Station is investigated. The neutral gas pressure is used as a control parameter to trigger phase changes. Detailed analysis of structural properties and evaluation of three different melting-freezing indicators reveal that complex plasmas can exhibitmelting by increasing the gas pressure. Theoretical estimates of complex plasma parameters allow us to identify main factors responsible for the observed behavior. The location of phase states of the investigated systems on a relevant equilibrium phase diagram is estimated. Important differences between the melting process of 3D complex plasmas under microgravity conditions and that of flat 2D complex plasma crystals in ground based experiments are discussed.
引用
收藏
页数:12
相关论文
共 111 条
[1]   THERMODYNAMIC AND STRUCTURAL-PROPERTIES OF MODEL SYSTEMS AT SOLID-FLUID COEXISTENCE .1. FCC AND BCC SOFT SPHERES [J].
AGRAWAL, R ;
KOFKE, DA .
MOLECULAR PHYSICS, 1995, 85 (01) :23-42
[2]   On the orbital motion limited theory for a small body at floating potential in a Maxwellian plasma [J].
Allen, JE ;
Annaratone, BM ;
de Angelis, U .
JOURNAL OF PLASMA PHYSICS, 2000, 63 :299-309
[3]   PROBE THEORY - THE ORBITAL MOTION APPROACH [J].
ALLEN, JE .
PHYSICA SCRIPTA, 1992, 45 (05) :497-503
[4]  
[Anonymous], 2010, Complex and Dusty Plasmas: From Laboratory to Space
[5]   Quantitative prediction of crystal-nucleation rates for spherical colloids: A computational approach [J].
Auer, S ;
Frenkel, D .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2004, 55 :333-361
[6]   Numerical prediction of absolute crystallization rates in hard-sphere colloids [J].
Auer, S ;
Frenkel, D .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (06) :3015-3029
[7]   CHARGING OF DUST GRAINS IN A PLASMA [J].
BARKAN, A ;
DANGELO, N ;
MERLINO, RL .
PHYSICAL REVIEW LETTERS, 1994, 73 (23) :3093-3096
[8]   Lindemann measures for the solid-liquid phase transition [J].
Chakravarty, Charusita ;
Debenedetti, Pablo G. ;
Stillinger, Frank H. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (20)
[9]   Complex plasma-the plasma state of soft matter [J].
Chaudhuri, Manis ;
Ivlev, Alexei V. ;
Khrapak, Sergey A. ;
Thomas, Hubertus M. ;
Morfill, Gregor E. .
SOFT MATTER, 2011, 7 (04) :1287-1298
[10]   Shielding of a Small Charged Particle in Weakly Ionized Plasmas [J].
Chaudhuri, Manis ;
Khrapak, Sergey A. ;
Kompaneets, Roman ;
Morfill, Gregor E. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (04) :818-825