A nonisothermal, two-phase model for polymer electrolyte fuel cells

被引:269
作者
Wang, Y [1 ]
Wang, CY
机构
[1] Penn State Univ, Electrochem Engine Ctr, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
D O I
10.1149/1.2193403
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A model fully coupling the two-phase flow, species transport, heat transfer, and electrochemical processes is developed to investigate liquid water distribution and flooding in polymer electrolyte fuel cells (PEFCs) under nonisothermal conditions. The thermal model accounts for irreversible heat and entropic heat generated due to electrochemical reactions, Joule heating arising from protonic/electronic resistance, and latent heat of water condensation and/or evaporation. A theoretical analysis is presented to show that in the two-phase zone, water transport via vapor-phase diffusion under the temperature gradient is not negligible, with a magnitude comparable to the water production rate in PEFCs. Detailed numerical results further reveal that the vapor-phase diffusion enhances water removal from the gas diffusion layer (GDL) under the channel and exacerbates GDL flooding under the land. Simultaneously, this vapor-phase diffusion provides a new mechanism for heat removal through a phase change process in which water evaporates at the hotter catalyst layer, diffuses through the interstitial spaces of the GDL, and condenses on the cooler land surface. This new heat removal mechanism resembles the heat pipe effect. Three-dimensional simulations for a full PEFC using this nonisothermal, two-phase model are presented for the first time. Separate velocity fields of gas and liquid phases are given, clearly illustrating that the vapor-phase diffusion and capillary-driven liquid water transport in a GDL aid each other in water removal along the through-plane direction under the channel area, but oppose each other along the in-plane direction between the channel area and land. (C) 2006 The Electrochemical Society.
引用
收藏
页码:A1193 / A1200
页数:8
相关论文
共 42 条
[1]  
[Anonymous], 1980, SERIES COMPUTATIONAL, DOI [DOI 10.1201/9781482234213, 10.1201/9781482234213]
[2]   A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J].
Berning, T ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1589-A1598
[3]  
Bird R.B., 2006, TRANSPORT PHENOMENA, Vsecond, DOI 10.1002/aic.690070245
[4]   Analysis of a two-phase non-isothermal model for a PEFC [J].
Birgersson, E ;
Noponen, M ;
Vynnycky, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A1021-A1034
[5]   Transport phenomena in polymeric membrane fuel cells [J].
Costamagna, P .
CHEMICAL ENGINEERING SCIENCE, 2001, 56 (02) :323-332
[6]  
Dullien F.A., 2012, Porous Media: Fluid Transport and Pore Structure
[7]   Three-dimensional numerical simulation of straight channel PEM fuel cells [J].
Dutta, S ;
Shimpalee, S ;
Van Zee, JW .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (02) :135-146
[8]  
*FLUENT INC, 2003, FLUENT 6 1 UDF MAN
[9]   WATER AND THERMAL MANAGEMENT IN SOLID-POLYMER-ELECTROLYTE FUEL-CELLS [J].
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (05) :1218-1225
[10]  
Incropera F.P., 1990, FUNDAMENTALS HEAT MA