Controlling histone methylation via trans-histone pathways

被引:20
作者
Fingerman, Ian M.
Du, Hai-Ning
Briggs, Scott D. [1 ]
机构
[1] Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA
关键词
chromatin; histone; trans-histone; methylation; lysine methyltransferase; ubiquitination; Dot1; Set2; Set1; Rad6;
D O I
10.4161/epi.3.5.6869
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Covalent post-translational modifications of histones have been demonstrated to participate in a wide array of cellular processes, including regulation of gene transcription, gene repression, DNA double strand break repair and mitosis. Regulation of how these covalent modifications, and the implications of this regulation, are currently of great interest. It has been long known that the addition and/or removal of these chromatin modifications are catalyzed by various classes of chromatin modifying enzymes, such as histone acetyltransferases/deacetylases and histone methyltransferases/demethylases. More recently, it has been demonstrated that the addition or removal of these modifications can be dependant upon other existing modifications, both in cis, from within the same histone, or in trans, contributed from another histone. The first trans-histone regulatory event was observed in S. cerevisiae, and influenced histone lysine methylation. This review will give insight into and summarize newly identified trans-histone pathways as a regulatory mechanism for histone lysine methylation.
引用
收藏
页码:237 / 242
页数:6
相关论文
共 84 条
[1]   Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin [J].
Altaf, Mohammed ;
Utley, Rhea T. ;
Lacoste, Nicolas ;
Tan, Song ;
Briggs, Scott D. ;
Cote, Jacques .
MOLECULAR CELL, 2007, 28 (06) :1002-1014
[2]   Histone methylation: Dynamic or static? [J].
Bannister, AJ ;
Schneider, R ;
Kouzarides, T .
CELL, 2002, 109 (07) :801-806
[3]   Gene silencing -: Trans-histone regulatory pathway in chromatin [J].
Briggs, SD ;
Xiao, TJ ;
Sun, ZW ;
Caldwell, JA ;
Shabanowitz, J ;
Hunt, DF ;
Allis, CD ;
Strahl, BD .
NATURE, 2002, 418 (6897) :498-498
[4]   Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae [J].
Briggs, SD ;
Bryk, M ;
Strahl, BD ;
Cheung, WL ;
Davie, JK ;
Dent, SYR ;
Winston, F ;
Allis, CD .
GENES & DEVELOPMENT, 2001, 15 (24) :3286-3295
[5]   Evidence that SET1, a factor required for methylation of histone H3, regulates rDNA silencing in S-cerevisiae by a sir2-independent mechanism [J].
Bryk, M ;
Briggs, SD ;
Strahl, BD ;
Curcio, MJ ;
Allis, CD ;
Winston, F .
CURRENT BIOLOGY, 2002, 12 (02) :165-170
[6]   Role of histone H3 lysine 27 methylation in polycomb-group silencing [J].
Cao, R ;
Wang, LJ ;
Wang, HB ;
Xia, L ;
Erdjument-Bromage, H ;
Tempst, P ;
Jones, RS ;
Zhang, Y .
SCIENCE, 2002, 298 (5595) :1039-1043
[7]   Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription [J].
Carrozza, MJ ;
Li, B ;
Florens, L ;
Suganuma, T ;
Swanson, SK ;
Lee, KK ;
Shia, WJ ;
Anderson, S ;
Yates, J ;
Washburn, MP ;
Workman, JL .
CELL, 2005, 123 (04) :581-592
[8]   Structural and sequence motifs of protein (histone) methylation enzymes [J].
Cheng, XD ;
Collins, RE ;
Zhang, X .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2005, 34 :267-294
[9]   Critical role for the histone H4N terminus in nucleosome remodeling by ISWI [J].
Clapier, CR ;
Längst, G ;
Corona, DFV ;
Becker, PB ;
Nightingale, KP .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (03) :875-883
[10]   Histone H3 lysine 4 mono-methylation does not require ubiquitination of histone H2B [J].
Dehé, PM ;
Pamblanco, M ;
Luciano, P ;
Lebrun, R ;
Moinier, D ;
Sendra, R ;
Verreault, A ;
Tordera, V ;
Géli, V .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 353 (03) :477-484