Pharmacological modulation of nitric oxide synthesis by mechanism-based inactivators and related inhibitors

被引:39
作者
Bryk, R [1 ]
Wolff, DJ [1 ]
机构
[1] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Pharmacol, Piscataway, NJ 08854 USA
关键词
nitric oxide; nitric oxide synthase; mechanism-based inactivator; kinetics; intact cells;
D O I
10.1016/S0163-7258(99)00030-3
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Nitric oxide synthase (NOS) (EC 1.14.13.39) is a homodimeric cytochrome P450 monooxygenase analog that generates nitric oxide (NO) from the amino acid L-arginine. Enzymatically produced NO acts as an intracellular messenger in neuronal networks, blood pressure regulatory mechanisms, and immune responses. Isoform-selective pharmacological modulation of NO synthesis has emerged as a new therapeutic strategy for the treatment of diverse clinical conditions associated with NO overproduction. Mechanism-based inactivators (MBIs) represent a class of NOS mechanistic inhibitors that require catalytic turnover to produce irreversible inactivation of the ability of NOS to generate NO. Diverse isoform-selective NOS MBIs have been characterized with respect to their kinetic parameters and chemical mechanisms of inactivation. In studies with isolated and purified NOS isoforms, MBIs produce irreversible inactivation of NOS enzymatic activities. The inactivation process is associated with covalent modification of the NOS active site and proceeds either through heme destruction, its structural alteration, or covalent modification of the NOS protein chain. The behavior of NOS MBIs in intact cells is different from their behavior observed with the isolated NOS isoforms. In cytokine-induced RAW 264.7 macrophages, treatment with MBIs produces a complete loss of cellular NOS synthetic competence and inducible NOS activity. However, following drug removal, cells can recover at least partially in the absence of protein synthesis. In GH, cells containing the neuronal NOS isoform, calcium transients are too low and abbreviated to allow significant NOS inactivation; hence, the cellular effects of MBIs on the neuronal isoform are almost completely and immediately reversible. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:157 / 178
页数:22
相关论文
共 172 条
[1]   Analysis of neuronal NO synthase under single-turnover conditions: Conversion of N-omega-hydroxyarginine to nitric oxide and citrulline [J].
AbuSoud, HM ;
Presta, A ;
Mayer, B ;
Stuehr, DJ .
BIOCHEMISTRY, 1997, 36 (36) :10811-10816
[2]   NITRIC-OXIDE SYNTHASES REVEAL A ROLE FOR CALMODULIN IN CONTROLLING ELECTRON-TRANSFER [J].
ABUSOUD, HM ;
STUEHR, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (22) :10769-10772
[3]  
ABUSOUD HM, 1994, J BIOL CHEM, V269, P32047
[4]   Intracellular assembly of inducible NO synthase is limited by nitric oxide-mediated changes in heme insertion and availability [J].
Albakri, QA ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (10) :5414-5421
[5]   N5-(1-imino-5-butenyl)-L-ornithine -: A neuronal isoform selective mechanism-based inactivator of nitric oxide synthase [J].
Babu, BR ;
Griffith, OW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (15) :8882-8889
[6]  
BAEK KJ, 1993, J BIOL CHEM, V268, P21120
[7]   NITRIC-OXIDE AND AIRWAY DISEASE [J].
BARNES, PJ .
ANNALS OF MEDICINE, 1995, 27 (03) :389-393
[8]   Reaction of neuronal nitric-oxide synthase with oxygen at low temperature - Evidence for reductive activation of the oxy-ferrous complex by tetrahydrobiopterin [J].
Bec, N ;
Gorren, ACF ;
Voelker, C ;
Mayer, B ;
Lange, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (22) :13502-13508
[9]   L-ARGININE TRANSPORT IS INCREASED IN MACROPHAGES GENERATING NITRIC-OXIDE [J].
BOGLE, RG ;
BAYDOUN, AR ;
PEARSON, JD ;
MONCADA, S ;
MANN, GE .
BIOCHEMICAL JOURNAL, 1992, 284 :15-18
[10]   Delineation of the arginine- and tetrahydrobiopterin-binding sites of neuronal nitric oxide synthase [J].
Boyhan, A ;
Smith, D ;
Charles, IG ;
Saqi, M ;
Lowe, PN .
BIOCHEMICAL JOURNAL, 1997, 323 :131-139