A multi-sensor cell containing a new photo-cured calcium ion selective electrode sensor is reported. Four membranes containing different components are prepared to determine the one with optimum selectivity and sensitivity. This is shown to consist of the N,N,N',N'-tetracyclohexyl-3-oxapentanediamide ligand (ETH 129) as the ionophore, 2-nitrophenyl octyl ether as the plasticiser and tetradodecyl ammonium tetrakis(4-chlorophenyl) berate as the lipophilic additive. The photo-curing process is applied after coating a thin membrane on a silver wire as substrate transducer to produce the calcium sensor. The curing process is demonstrated to be faster (1 min) than previous methods and does not require a nitrogen atmosphere for reproducible production of membrane response characteristics. Four sensors constructed with the identical optimum membrane are shown to function reproducibly in a multi-sensor flow-through cell using the steady-state mode of flow measurement, and an average calibration slope of 28.5 +/- 0.4 mV change per activity decade is observed over a log-linear concentration range between 0.01 and 10 mM. The sensor is also shown to respond to changes in pH. Hence, in the flow injection potentiometric mode, a constant carrier buffer composition of pH 8.3 is required for accurate potentiometric calcium determinations. The sensor is used to determine calcium in water samples by flow injection potentiometry. The accuracy of the electrode determination relative to atomic absorption spectroscopy was in the range 5-9% for three different water samples. (C) 1997 Elsevier Science B.V.