Piecewise linear prewavelets on arbitrary triangulations

被引:24
作者
Floater, MS [1 ]
Quak, EG [1 ]
机构
[1] SINTEF Appl Math, N-0314 Oslo, Norway
关键词
Mathematics Subject Classification (1991):41A15, 41A63, 65D07, 68U05;
D O I
10.1007/s002110050418
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies locally supported piecewise linear prewavelets on bounded triangulations of arbitrary topology. It is shown that a concrete choice of prewavelets form a basis of the wavelet space when the degree of the vertices in the triangulation is not too high.
引用
收藏
页码:221 / 252
页数:32
相关论文
共 17 条
[1]  
[Anonymous], 1993, Ten Lectures of Wavelets
[2]   Piecewise linear interpolants to Lagrange and Hermite convex scattered data [J].
Carnicer, JM ;
Floater, MS .
NUMERICAL ALGORITHMS, 1996, 13 (3-4) :345-364
[3]   Local decomposition of refinable spaces and wavelets [J].
Carnicer, JM ;
Dahmen, W ;
Pena, JM .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (02) :127-153
[4]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[5]  
DAHMEN W, 1992, 9725 U NIJM DEP MATH
[6]  
FLOATER MS, UNPUB LINEAR INDEPEN
[7]  
FLOATER MS, IN PRESS APPROXIMATI, V9
[8]  
KOTYCZKA U, 1995, APPROXIMATION THEO 8, V2, P235
[9]  
LORENTZ R, 1996, 993 GMD
[10]   Multiresolution analysis for surfaces of arbitrary topological type [J].
Lounsbery, M ;
DeRose, TD ;
Warren, J .
ACM TRANSACTIONS ON GRAPHICS, 1997, 16 (01) :34-73