Mass and angular-momentum inequalities for axi-symmetric initial data sets. II. Angular momentum

被引:42
作者
Chrusciel, Piotr T. [1 ,2 ]
Li, Yanyan [3 ]
Weinstein, Gilbert [4 ]
机构
[1] LMPT, Tours, France
[2] Math Inst, Oxford OX1 3LB, England
[3] Rutgers State Univ, Piscataway, NJ 08855 USA
[4] Univ Alabama, Birmingham, AL USA
关键词
angular momentum in general relativity; axisymmetric general relativistic initial data;
D O I
10.1016/j.aop.2007.12.011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend the validity of Dain's angular-momentum inequality to maximal, asymptotically flat, initial data sets on a simply connected manifold with several asymptotically flat ends which are invariant under a U(l) action and which admit a twist potential. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2591 / 2613
页数:23
相关论文
共 10 条
[2]   Mass and angular-momentum inequalities for axi-symmetric initial data sets I. Positivity of mass [J].
Chrusciel, Piotr T. .
ANNALS OF PHYSICS, 2008, 323 (10) :2566-2590
[3]  
DAIN S, 2006, ARXIVGRQC0606105
[4]   A variational principle for stationary, axisymmetric solutions of Einstein's equations [J].
Dain, Sergio .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (23) :6857-6871
[5]   The positive mass and isoperimetric inequalities for axisymmetric black holes in four and five dimensions [J].
Gibbons, G. W. ;
Holzegel, G. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (22) :6459-6478
[6]   EXISTENCE THEOREM FOR HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
HILDEBRANDT, S ;
KAUL, H ;
WIDMAN, KO .
ACTA MATHEMATICA, 1977, 138 (1-2) :1-16
[7]  
JEZIERSKI J, EXISTENCE KUND UNPUB
[8]   REGULARITY OF HARMONIC MAPS WITH PRESCRIBED SINGULARITIES [J].
LI, YY ;
TIAN, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (01) :1-30
[10]  
Weinstein G, 1996, MATH RES LETT, V3, P835