Chaotic spatially subharmonic oscillations

被引:21
作者
Lima, D [1 ]
DeWit, A [1 ]
Dewel, G [1 ]
Borckmans, P [1 ]
机构
[1] FREE UNIV BRUSSELS, CTR NONLINEAR PHENOMENA & COMPLEX SYST, B-1050 BRUSSELS, BELGIUM
关键词
D O I
10.1103/PhysRevE.53.R1305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The interplay between two instabilities respectively breaking space and time symmetries can give rise to spatially subharmonic oscillations generated by a self-induced parametric instability. In one-dimensional systems, the resulting dynamics consists in a pattern with two wave numbers oscillating with one frequency. Conditions are given for which this solution becomes phase unstable giving rise to spatiotemporal chaos.
引用
收藏
页码:R1305 / R1308
页数:4
相关论文
共 24 条
[1]   NUCLEATION THEORY OF OVERDAMPED SOLITON MOTION [J].
BUTTIKER, M ;
LANDAUER, R .
PHYSICAL REVIEW A, 1981, 23 (03) :1397-1410
[2]   SUBHARMONIC INSTABILITIES OF FINITE-AMPLITUDE MONOCHROMATIC WAVES [J].
CHENG, MQ ;
CHANG, HC .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (03) :505-523
[3]   DEFECT-MEDIATED TURBULENCE [J].
COULLET, P ;
GIL, L ;
LEGA, J .
PHYSICAL REVIEW LETTERS, 1989, 62 (14) :1619-1622
[4]   PHASE INSTABILITY AND DEFECT BEHAVIOR IN MODULATED WAVE PATTERNS [J].
COULLET, P ;
EMILSSON, K ;
WALGRAEF, D .
PHYSICA D, 1992, 61 (1-4) :132-139
[5]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[6]   EXPERIMENTAL-STUDY OF STATIONARY TURING PATTERNS AND THEIR INTERACTION WITH TRAVELING WAVES IN A CHEMICAL-SYSTEM [J].
DEKEPPER, P ;
PERRAUD, JJ ;
RUDOVICS, B ;
DULOS, E .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (05) :1215-1231
[7]   CHAOTIC TURING-HOPF MIXED-MODE [J].
DEWIT, A ;
DEWEL, G ;
BORCKMANS, P .
PHYSICAL REVIEW E, 1993, 48 (06) :R4191-R4194
[8]  
DEWIT A, 1993, THESIS U LIBRE DEBRU
[9]   THE 2/1 STEADY/HOPF MODE INTERACTION IN THE 2-LAYER BENARD-PROBLEM [J].
FUJIMURA, K ;
RENARDY, YY .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 85 (1-2) :25-65
[10]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2