On preconditioning the data for the wavelet transform when the sample size is not a power of two

被引:10
作者
Ogden, RT [1 ]
机构
[1] UNIV S CAROLINA,DEPT STAT,COLUMBIA,SC 29208
关键词
wavelet transform algorithms; wavelet shrinkage; threshold selection; nonparametric regression; padding data; interpolation; a trous algorithm; correlation matrix;
D O I
10.1080/03610919708813391
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A powerful and efficient method for nonparametric regression involves taking the discrete wavelet transform (DWT) of data, shrinking the resulting wavelet coefficients, and then computing the inverse wavelet transform to get an estimate of the regression function. Currently, most wavelet decomposition software packages require that the original set of data have sample size n equal to a power of two in order to achieve an exact orthogonal wavelet transform. In statistical data analysis, such is rarely the case, so in an effort to broaden the applicability of such methods, various ways of preconditioning data not meeting this restriction are discussed and compared.
引用
收藏
页码:467 / 485
页数:19
相关论文
共 13 条
[1]  
[Anonymous], ESSENTIAL WAVELETS S
[2]  
[Anonymous], NONPARAMETRIC STAT R
[3]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[4]  
Cohen A., 1993, Applied and Computational Harmonic Analysis, V1, P54, DOI 10.1006/acha.1993.1005
[5]  
Daubechies I, 1992, 10 LECT WAVELETS
[6]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[7]  
DONOHO DL, 1995, J ROY STAT SOC B MET, V57, P301
[8]  
Dutilleux P., 1990, WAVELETS TIME FREQUE
[9]   AN OVERVIEW OF WAVELET-BASED MULTIRESOLUTION ANALYSES [J].
JAWERTH, B ;
SWELDENS, W .
SIAM REVIEW, 1994, 36 (03) :377-412
[10]   A THEORY FOR MULTIRESOLUTION SIGNAL DECOMPOSITION - THE WAVELET REPRESENTATION [J].
MALLAT, SG .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :674-693