Estimation of image noise variance

被引:178
作者
Rank, K [1 ]
Lendl, M [1 ]
Unbehauen, R [1 ]
机构
[1] Univ Erlangen Nurnberg, Lehrstuhl Allgemeine & Theoret Elektrotech, D-91058 Erlangen, Germany
来源
IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING | 1999年 / 146卷 / 02期
关键词
D O I
10.1049/ip-vis:19990238
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel algorithm for estimating the noise variance of an image is presented. The image is assumed to be corrupted by Gaussian distributed noise. The algorithm estimates the noise variance in three steps. At first the noisy image is filtered by a horizontal and a vertical difference operator to suppress the influence of the (unknown) original image. In a second step a histogram of local signal variances is computed. Finally a statistical evaluation of the histogram provides the desired estimation value. For a comparison with several previously published estimation methods an ensemble of 128 natural and artificial test images is used. It is shown that with the novel algorithm more accurate results can be achieved.
引用
收藏
页码:80 / 84
页数:5
相关论文
共 13 条
[1]  
Besl P.J., 1988, Surfaces in Range Image Understanding, V1th
[2]   SEGMENTATION THROUGH VARIABLE-ORDER SURFACE FITTING [J].
BESL, PJ ;
JAIN, RC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1988, 10 (02) :167-192
[3]  
Bracho R., 1985, Proceedings CVPR '85: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No. 85CH2145-1), P341
[4]  
Glassner A. S., 1989, An Introduction to Ray Tracing
[5]  
Gonzalez RC, 1987, Digital Image Processing, V2nd
[6]   Fast noise variance estimation [J].
Immerkaer, J .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1996, 64 (02) :300-302
[7]  
Lee J. S., 1989, P 1989 INT GEOSC REM, V2, P1005, DOI DOI 10.1109/IGARSS.1989.579061
[8]   ADAPTIVE FILTERS FOR DIGITAL IMAGE NOISE SMOOTHING - AN EVALUATION [J].
MASTIN, GA .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1985, 31 (01) :103-121
[9]   A FAST PARALLEL ALGORITHM FOR BLIND ESTIMATION OF NOISE VARIANCE [J].
MEER, P ;
JOLION, JM ;
ROSENFELD, A .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (02) :216-223
[10]   A SIMPLEX-METHOD FOR FUNCTION MINIMIZATION [J].
NELDER, JA ;
MEAD, R .
COMPUTER JOURNAL, 1965, 7 (04) :308-313