Molecular alignment of denatured states of staphylococcal nuclease with strained polyacrylamide gels and surfactant liquid crystalline phases

被引:31
作者
Ackerman, MS [1 ]
Shortle, D [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biol Chem, Baltimore, MD 21205 USA
关键词
D O I
10.1021/bi0120796
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Residual dipolar couplings reflect the orientation of vectors between pairs of magnetic nuclei relative to a unique set of molecular axes. Thus, unlike NOEs and scalar couplings, dipolar couplings provide access to long-range structural information. A prerequisite for measurement of these NMR parameters is imposition of a weak net alignment, most simply by forcing the macromolecules to tumble in an asymmetric environment that restricts some orientations more than others. In this report, several denatured forms of staphylococcal. nuclease are aligned by using compressed and stretched polyacrylamide gels, a nonionic type of lipid bilayer disk or bicelle, and a liquid crystalline phase formed by a cationic lipid. All three types of media can be used at high urea concentrations. While polyacrylamide gels and bicelles produce similar alignment tensors through steric interactions, a liquid crystalline phase of cetylpyridinium bromide aligns denatured nuclease along a different set of axes, presumably through electrostatic effects. The analysis of residual dipolar couplings collected with two different alignment tensors may permit the calculation of ensembles of conformations. The dipolar couplings observed for staphylococcal nuclease denatured with urea, by low pH or by deletion of residues from both termini, suggest that all denatured forms share a common "topology", one which has been shown previously to be nativelike. Although SDS/nuclease complexes give sharp and disperse H-1-N-15 correlation spectra, only small couplings are observed in strained polyacrylamide gels.
引用
收藏
页码:3089 / 3095
页数:7
相关论文
共 29 条
[1]   BACKBONE DYNAMICS OF A HIGHLY DISORDERED 131-RESIDUE FRAGMENT OF STAPHYLOCOCCAL NUCLEASE [J].
ALEXANDRESCU, AT ;
SHORTLE, D .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 242 (04) :527-546
[2]   STRUCTURE AND DYNAMICS OF A DENATURED 131-RESIDUE FRAGMENT OF STAPHYLOCOCCAL NUCLEASE - A HETERONUCLEAR NMR-STUDY [J].
ALEXANDRESCU, AT ;
ABEYGUNAWARDANA, C ;
SHORTLE, D .
BIOCHEMISTRY, 1994, 33 (05) :1063-1072
[3]  
ANFINSEN CB, 1971, COLD SPRING HARB SYM, V36, P249
[4]   Characterization of surfactant liquid crystal phases suitable for molecular alignment and measurement of dipolar couplings [J].
Barrientos, LG ;
Dolan, C ;
Gronenborn, AM .
JOURNAL OF BIOMOLECULAR NMR, 2000, 16 (04) :329-337
[5]   Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses [J].
Clore, GM ;
Starich, MR ;
Gronenborn, AM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (40) :10571-10572
[6]   Protein structure determination using molecular fragment replacement and NMR dipolar couplings [J].
Delaglio, F ;
Kontaxis, G ;
Bax, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (09) :2142-2143
[7]   Characterization of long-range structure in the denatured state of staphylococcal nuclease .1. Paramagnetic relaxation enhancement by nitroxide spin labels [J].
Gillespie, JR ;
Shortle, D .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 268 (01) :158-169
[8]   Characterization of long-range structure in the denatured state of staphylococcal nuclease .2. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures [J].
Gillespie, JR ;
Shortle, D .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 268 (01) :170-184
[9]   NMR measurement of dipolar couplings in proteins aligned by transient binding to purple membrane fragments [J].
Koenig, BW ;
Hu, JS ;
Ottiger, M ;
Bose, S ;
Hendler, RW ;
Bax, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (06) :1385-1386
[10]   STRUCTURAL CHARACTERIZATION OF THE FK506 BINDING-PROTEIN UNFOLDED IN UREA AND GUANIDINE-HYDROCHLORIDE [J].
LOGAN, TM ;
THERIAULT, Y ;
FESIK, SW .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 236 (02) :637-648