Hospital-acquired infections-appropriate statistical treatment is urgently needed!

被引:87
作者
Schumacher, Martin [1 ]
Allignol, Arthur [1 ]
Beyersmann, Jan [1 ,2 ]
Binder, Nadine [1 ]
Wolkewitz, Martin [1 ]
机构
[1] Univ Med Ctr Freiburg, Inst Med Biometry & Med Informat, D-79106 Freiburg, Germany
[2] Univ Ulm, Inst Stat, D-89069 Ulm, Germany
关键词
Hospital-acquired infections; cohort studies; time-dependent bias; length bias; competing risks; LENGTH-OF-STAY; INTENSIVE-CARE-UNIT; TIME-DEPENDENT BIAS; CRITICALLY-ILL PATIENTS; COMPETING RISKS; NOSOCOMIAL INFECTIONS; MULTISTATE MODELS; STAPHYLOCOCCUS-AUREUS; ATTRIBUTABLE MORTALITY; REGRESSION-MODELS;
D O I
10.1093/ije/dyt111
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Research on hospital-acquired infections (HAIs) requires the highest methodological standards to minimize the risk of bias and to avoid misleading interpretation. There are two major issues related specifically to studies in this area, namely the timing of infection and the occurrence of so-called competing risks, which deserve special attention. Just as a patient who acquires a serious infection during hospital admission needs appropriate antibiotic treatment, data being collected in studies on hospital-acquired infections need appropriate statistical analysis. We illustrate the urgent need for appropriate statistical treatment of hospital-acquired infections with some examples from recently conducted studies.The considerations presented are relevant for investigations on risk factors for HAIs as well as for outcome studies.
引用
收藏
页码:1502 / 1508
页数:7
相关论文
共 50 条
[1]   Armitage lecture 2010: Understanding treatment effects: the value of integrating longitudinal data and survival analysis [J].
Aalen, Odd O. .
STATISTICS IN MEDICINE, 2012, 31 (18) :1903-1917
[2]   Risk and causes of paediatric hospital-acquired bacteraemia in Kilifi District Hospital, Kenya: a prospective cohort study [J].
Aiken, Alexander M. ;
Mturi, Neema ;
Njuguna, Patricia ;
Mohammed, Shebe ;
Berkley, James A. ;
Mwangi, Isaiah ;
Mwarumba, Salim ;
Kitsao, Barnes S. ;
Lowe, Brett S. ;
Morpeth, Susan C. ;
Hall, Andrew J. ;
Khandawalla, Iqbal ;
Scott, J. Anthony G. .
LANCET, 2011, 378 (9808) :2021-2027
[3]   Competing risks in epidemiology: possibilities and pitfalls [J].
Andersen, Per Kragh ;
Geskus, Ronald B. ;
de Witte, Theo ;
Putter, Hein .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2012, 41 (03) :861-870
[4]  
Andersen PK, 2002, STAT METHODS MED RES, V11, P91, DOI 10.1191/0962280202SM276ra
[5]   Competing risks as a multi-state model [J].
Andersen, PK ;
Abildstrom, SZ ;
Rosthoj, S .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2002, 11 (02) :203-215
[6]   Analysis of survival by tumor response and other comparisons of time-to-event by outcome variables [J].
Anderson, James R. ;
Cain, Kevin C. ;
Gelber, Richard D. .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (24) :3913-3915
[7]  
[Anonymous], HOSP EPIDEMIOLOGY IN
[8]   The Time-Dependent Bias and its Effect on Extra Length of Stay due to Nosocomial Infection [J].
Barnett, Adrian G. ;
Beyersmann, Jan ;
Allignol, Arthur ;
Rosenthal, Victor D. ;
Graves, Nicholas ;
Wolkewitz, Martin .
VALUE IN HEALTH, 2011, 14 (02) :381-386
[9]   Using a Longitudinal Model to Estimate the Effect of Methicillin-resistant Staphylococcus aureus Infection on Length of Stay in an Intensive Care Unit [J].
Barnett, Adrian G. ;
Batra, Rahul ;
Graves, Nicholas ;
Edgeworth, Jonathan ;
Robotham, Julie ;
Cooper, Ben .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2009, 170 (09) :1186-1194
[10]   Use of multistate models to assess prolongation of intensive care unit stay due to nosocomial infection [J].
Beyersmann, J. ;
Gastmeier, P. ;
Grundmann, H. ;
Baerwolff, S. ;
Geffers, C. ;
Behnke, M. ;
Rueden, H. ;
Schumacher, M. .
INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2006, 27 (05) :493-499