Intrinsic defects and dopability of zinc phosphide

被引:30
作者
Demers, Steven [1 ]
van de Walle, Axel [1 ]
机构
[1] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
TOTAL-ENERGY; BAND-GAPS;
D O I
10.1103/PhysRevB.85.195208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Zinc phosphide (Zn3P2) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping of the material. In an effort to understand the mechanism behind this, the energetics and electronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel "perturbation extrapolation" is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type Zn3P2 and act as "electron sinks," nullifying the desired doping and lowering the Fermi-level back toward the p-type regime. This is consistent with experimental observations of both the tendency of conductivity to rise with phosphorus partial pressure, and with current partial successes in n-type doping in very zinc-rich growth conditions.
引用
收藏
页数:10
相关论文
共 27 条
[1]   Intrinsic n-Type Behavior in Transparent Conducting Oxides: A Comparative Hybrid-Functional Study of In2O3, SnO2, and ZnO [J].
Agoston, Peter ;
Albe, Karsten ;
Nieminen, Risto M. ;
Puska, Martti J. .
PHYSICAL REVIEW LETTERS, 2009, 103 (24)
[2]   POLYCRYSTALLINE ZN3P2 SCHOTTKY-BARRIER SOLAR-CELLS [J].
BHUSHAN, M ;
CATALANO, A .
APPLIED PHYSICS LETTERS, 1981, 38 (01) :39-41
[3]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[4]   ANOMALOUS OPTICAL ABSORPTION LIMIT IN INSB [J].
BURSTEIN, E .
PHYSICAL REVIEW, 1954, 93 (03) :632-633
[5]   DEFECT DOMINATED CONDUCTIVITY IN ZN3P2 [J].
CATALANO, A ;
HALL, RB .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1980, 41 (06) :635-640
[6]   NEW METHOD FOR CALCULATING 1-PARTICLE GREENS FUNCTION WITH APPLICATION TO ELECTRON-GAS PROBLEM [J].
HEDIN, L .
PHYSICAL REVIEW, 1965, 139 (3A) :A796-+
[7]   Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional [J].
Heyd, J ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (03) :1187-1192
[8]  
Heyd J, 2006, J CHEM PHYS, V124, DOI [10.1063/1.2204597, 10.1063/1.1564060]
[9]   MOMENTUM-SPACE FORMALISM FOR THE TOTAL ENERGY OF SOLIDS [J].
IHM, J ;
ZUNGER, A ;
COHEN, ML .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (21) :4409-4422
[10]   Hybrid functional studies of the oxygen vacancy in TiO2 [J].
Janotti, A. ;
Varley, J. B. ;
Rinke, P. ;
Umezawa, N. ;
Kresse, G. ;
Van de Walle, C. G. .
PHYSICAL REVIEW B, 2010, 81 (08)