Mutations conferring resistance to phenamil and amiloride, inhibitors of sodium-driven motility of Vibrio parahaemolyticus

被引:47
作者
Jaques, S [1 ]
Kim, YK [1 ]
McCarter, LL [1 ]
机构
[1] Univ Iowa, Dept Microbiol, Iowa City, IA 52242 USA
关键词
D O I
10.1073/pnas.96.10.5740
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The bacterial flagellum is powered by a rotary motor capable of turning the helical flagellar propeller at very high speeds. Energy to drive rotation is derived from the transmembrane electrochemical potential of specific ions. Ions passing through a channel component are thought to generate the force to power rotation. Two kinds of motors, dependent on different coupling ions, have been described: proton-driven and sodium-driven motors. There are four known genes encoding components of the sodium-powered polar flagellar motor in Vibrio parahaemolyticus, Typo, which are characterized here, are homologous to genes encoding constituents of the proton-type motor (motA and motB), and two encode components unique to the sodium-type motor (motX and motY). The sodium-channel-blocking drugs phenamil and amiloride inhibit rotation of the polar flagellum and therefore can be used to probe the architecture of the motor. Mutants were isolated that could swim in the presence of phenamil or amiloride, The majority of the mutations conferring phenamil-resistant motility alter nucleotides in the motA or motB genes. The resultant amino acid changes localize to the cytoplasmic face of the torque generator and permit identification of potential sodium-interaction sites. Mutations that confer motility in the presence of amiloride do not alter any known component of the sodium-type flagellar motor. Thus, evidence supports the existence of more than one class of sodium-interaction site at which inhibitors can interfere with sodium-driven motility.
引用
收藏
页码:5740 / 5745
页数:6
相关论文
共 49 条
[1]   Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium [J].
Asai, Y ;
Kojima, S ;
Kato, H ;
Nishioka, N ;
Kawagishi, I ;
Homma, M .
JOURNAL OF BACTERIOLOGY, 1997, 179 (16) :5104-5110
[2]   SPECIFIC-INHIBITION OF THE NA+-DRIVEN FLAGELLAR MOTORS OF ALKALOPHILIC BACILLUS STRAINS BY THE AMILORIDE ANALOG PHENAMIL [J].
ATSUMI, T ;
SUGIYAMA, S ;
CRAGOE, EJ ;
IMAE, Y .
JOURNAL OF BACTERIOLOGY, 1990, 172 (03) :1634-1639
[3]   POLAR AND LATERAL FLAGELLAR MOTORS OF MARINE VIBRIO ARE DRIVEN BY DIFFERENT ION-MOTIVE FORCES [J].
ATSUMI, T ;
MCCARTER, L ;
IMAE, Y .
NATURE, 1992, 355 (6356) :182-184
[4]   REGULATION OF LATERAL FLAGELLA GENE-TRANSCRIPTION IN VIBRIO-PARAHAEMOLYTICUS [J].
BELAS, R ;
SIMON, M ;
SILVERMAN, M .
JOURNAL OF BACTERIOLOGY, 1986, 167 (01) :210-218
[5]  
BERG HC, 1995, BIOPHYS J, V68, pS163
[6]  
BLAIR DF, 1991, J MOL BIOL, V221, P1433, DOI 10.1016/0022-2836(91)90943-Z
[7]   THE MOTA PROTEIN OF ESCHERICHIA-COLI IS A PROTON-CONDUCTING COMPONENT OF THE FLAGELLAR MOTOR [J].
BLAIR, DF ;
BERG, HC .
CELL, 1990, 60 (03) :439-449
[8]   HOW BACTERIA SENSE AND SWIM [J].
BLAIR, DF .
ANNUAL REVIEW OF MICROBIOLOGY, 1995, 49 :489-522
[9]   BACTERIAL MOTILITY - MEMBRANE TOPOLOGY OF THE ESCHERICHIA-COLI MOTB PROTEIN [J].
CHUN, SY ;
PARKINSON, JS .
SCIENCE, 1988, 239 (4837) :276-278
[10]   GENE SEQUENCE AND PREDICTED AMINO-ACID-SEQUENCE OF THE MOTA PROTEIN, A MEMBRANE-ASSOCIATED PROTEIN REQUIRED FOR FLAGELLAR ROTATION IN ESCHERICHIA-COLI [J].
DEAN, GE ;
MACNAB, RM ;
STADER, J ;
MATSUMURA, P ;
BURKS, C .
JOURNAL OF BACTERIOLOGY, 1984, 159 (03) :991-999