Quantum critical scaling and temperature-dependent logarithmic corrections in the spin-half Heisenberg chain

被引:39
作者
Starykh, OA
Singh, RRP
Sandvik, AW
机构
[1] UNIV CALIF DAVIS,DEPT PHYS,DAVIS,CA 95616
[2] FLORIDA STATE UNIV,NATL HIGH MAGNET FIELD LAB,TALLAHASSEE,FL 32306
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.78.539
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Low temperature dynamics of the S = 1/2 Heisenbeig chain is studied via a simple ansatz generalizing the conformal mapping and analytic continuation procedures to correlation functions with multiplicative logarithmic factors. Closed form expressions for the dynamic susceptibility and the NMR relaxation rates 1/T-1 and 1/T2(G) are obtained, and are argued to improve the agreement with recent experiments. Scaling in q/T and omega/T are violated due-to these logarithmic terms. Numerical results show that the logarithmic corrections are very robust. While not yet in the asymptotic low temperature regime, they provide striking qualitative confirmation of the theoretical results.
引用
收藏
页码:539 / 542
页数:4
相关论文
共 28 条
[1]   CRITICAL-BEHAVIOR OF SPIN-S HEISENBERG ANTIFERROMAGNETIC CHAINS - ANALYTIC AND NUMERICAL RESULTS [J].
AFFLECK, I ;
GEPNER, D ;
SCHULZ, HJ ;
ZIMAN, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :511-529
[2]   LOGARITHMIC CORRECTIONS IN ANTIFERROMAGNETIC CHAINS [J].
AFFLECK, I ;
BONNER, JC .
PHYSICAL REVIEW B, 1990, 42 (01) :954-957
[3]  
BOURGOURZI AH, 1996, PHYS REV B, V54, P12669
[4]   TWO-DIMENSIONAL QUANTUM HEISENBERG-ANTIFERROMAGNET AT LOW-TEMPERATURES [J].
CHAKRAVARTY, S ;
HALPERIN, BI ;
NELSON, DR .
PHYSICAL REVIEW B, 1989, 39 (04) :2344-2371
[5]   THEORY OF 2-DIMENSIONAL QUANTUM HEISENBERG ANTIFERROMAGNETS WITH A NEARLY CRITICAL GROUND-STATE [J].
CHUBUKOV, AV ;
SACHDEV, S ;
YE, J .
PHYSICAL REVIEW B, 1994, 49 (17) :11919-11961
[6]  
DENDER DC, 1996, B AM PHYS SOC, V41, P228
[7]   SUSCEPTIBILITY OF THE SPIN 1/2 HEISENBERG ANTIFERROMAGNETIC CHAIN [J].
EGGERT, S ;
AFFLECK, I ;
TAKAHASHI, M .
PHYSICAL REVIEW LETTERS, 1994, 73 (02) :332-335
[8]  
EGGERT S, CONDMAT9602026
[9]   CORRELATION-FUNCTIONS OF ONE-DIMENSIONAL QUANTUM-SYSTEMS [J].
GIAMARCHI, T ;
SCHULZ, HJ .
PHYSICAL REVIEW B, 1989, 39 (07) :4620-4629
[10]   Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data [J].
Jarrell, M ;
Gubernatis, JE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 269 (03) :133-195