Myelin-associated inhibitors regulate cofilin phosphorylation and neuronal inhibition through LIM kinase and slingshot phosphatase

被引:114
作者
Hsieh, SHK [1 ]
Ferraro, GB [1 ]
Fournier, AE [1 ]
机构
[1] McGill Univ, Montreal Neurol Inst, Dept Neurol & Neurosurg, Montreal, PQ H3A 2B4, Canada
关键词
Nogo; Lim kinase; Slingshot phosphatase; CNS regeneration; myelin inhibition; rho kinase;
D O I
10.1523/JNEUROSCI.2806-05.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Myelin-associated inhibitors (MAIs) signal through a tripartate receptor complex on neurons to limit axon regeneration in the CNS. Inhibitory influences ultimately converge on the cytoskeleton to mediate growth cone collapse and neurite outgrowth inhibition. Rho GTPase and its downstream effector Rho kinase are key signaling intermediates in response to MAIs; however, the links between Rho and the actin cytoskeleton have not been fully defined. We found that Nogo-66, a potent inhibitory fragment of Nogo-A, signals through LIM ( LIM is an acronym of the three gene products Lin-11, Isl-1, and Mec-3) kinase and Slingshot (SSH) phosphatase to regulate the phosphorylation profile of the actin depolymerization factor cofilin. Blockade of LIMK1 activation and subsequent cofilin phosphorylation circumvents myelin-dependent inhibition in chick dorsal root ganglion neurons, suggesting that phosphorylation and inactivation of cofilin is critical for neuronal inhibitory responses. Subsequent activation of SSH1 phosphatase mediates cofilin dephosphorylation and reactivation. Overexpression of SSH1 does not mimic the neurite outgrowth inhibitory effects of myelin, suggesting an alternative role in MAI inhibition. We speculate that SSH-mediated persistent cofilin activation may be responsible for maintaining an inhibited neuronal phenotype in response to myelin inhibitors.
引用
收藏
页码:1006 / 1015
页数:10
相关论文
共 36 条
[1]   Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse [J].
Aizawa, H ;
Wakatsuki, S ;
Ishii, A ;
Moriyama, K ;
Sasaki, Y ;
Ohashi, K ;
Sekine-Aizawa, Y ;
Sehara-Fujisawa, A ;
Mizuno, K ;
Goshima, Y ;
Yahara, I .
NATURE NEUROSCIENCE, 2001, 4 (04) :367-373
[2]   Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase [J].
Arber, S ;
Barbayannis, FA ;
Hanser, H ;
Schneider, C ;
Stanyon, CA ;
Bernard, O ;
Caroni, P .
NATURE, 1998, 393 (6687) :805-809
[3]   ADF/cofilin and actin dynamics in disease [J].
Bamburg, JR ;
Wiggan, OP .
TRENDS IN CELL BIOLOGY, 2002, 12 (12) :598-605
[4]   Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate [J].
Cai, D ;
Qiu, J ;
Cao, ZX ;
McAtee, M ;
Bregman, BS ;
Filbin, MT .
JOURNAL OF NEUROSCIENCE, 2001, 21 (13) :4731-4739
[5]  
Dergham P, 2002, J NEUROSCI, V22, P6570
[6]   Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics [J].
Edwards, DC ;
Sanders, LC ;
Bokoch, GM ;
Gill, GN .
NATURE CELL BIOLOGY, 1999, 1 (05) :253-259
[7]  
Endo M, 2003, J NEUROSCI, V23, P2527
[8]   Rho kinase inhibition enhances axonal regeneration in the injured CNS [J].
Fournier, AE ;
Takizawa, BT ;
Strittmatter, SM .
JOURNAL OF NEUROSCIENCE, 2003, 23 (04) :1416-1423
[9]   Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration [J].
Fournier, AE ;
GrandPre, T ;
Strittmatter, SM .
NATURE, 2001, 409 (6818) :341-346
[10]   Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics [J].
Gohla, A ;
Birkenfeld, J ;
Bokoch, GM .
NATURE CELL BIOLOGY, 2005, 7 (01) :21-+