Polysaccharides-based nanoparticles as drug delivery systems

被引:1341
作者
Liu, Zonghua [1 ]
Jiao, Yanpeng [1 ]
Wang, Yifei [2 ]
Zhou, Changren [1 ]
Zhang, Ziyong [1 ]
机构
[1] Jinan Univ, Dept Mat Sci & Engn, Guangzhou 510632, Guangdong, Peoples R China
[2] Jinan Univ, Biomed Res & Dev Ctr, Guangzhou 510632, Guangdong, Peoples R China
关键词
Polysaccharide; Nanoparticle; Drug delivery system;
D O I
10.1016/j.addr.2008.09.001
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Natural polysaccharides, due to their outstanding merits, have received more and more attention in the field of drug delivery systems. In particular, polysaccharides seem to be the most promising materials in the preparation of nanometeric carriers. This review relates to the newest developments in the preparation of polysaccharides-based nanoparticles. In this review, four mechanisms are introduced to prepare polysaccharides-based nanoparticles, that is, covalent crosslinking, ionic crosslinking, polyelectrolyte complex, and the self-assembly of hydrophobically modified polysaccharides. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1650 / 1662
页数:13
相关论文
共 131 条
[1]   Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: Thermal stabilization with refolding of carbonic anhydrase B [J].
Akiyoshi, K ;
Sasaki, Y ;
Sunamoto, J .
BIOCONJUGATE CHEMISTRY, 1999, 10 (03) :321-324
[2]   Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide [J].
Akiyoshi, K ;
Deguchi, S ;
Tajima, H ;
Nishikawa, T ;
Sunamoto, J .
MACROMOLECULES, 1997, 30 (04) :857-861
[3]   Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: Complexation and stabilization of insulin [J].
Akiyoshi, K ;
Kobayashi, S ;
Shichibe, S ;
Mix, D ;
Baudys, M ;
Kim, SW ;
Sunamoto, J .
JOURNAL OF CONTROLLED RELEASE, 1998, 54 (03) :313-320
[4]   Controlled association of amphiphilic polymers in water:: Thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly(N-isopropylacrylamides) [J].
Akiyoshi, K ;
Kang, EC ;
Kurumada, S ;
Sunamoto, J ;
Principi, T ;
Winnik, FM .
MACROMOLECULES, 2000, 33 (09) :3244-3249
[5]   Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26 [J].
Aktas, Y ;
Yemisci, M ;
Andrieux, K ;
Gürsoy, RN ;
Alonso, MJ ;
Fernandez-Megia, E ;
Novoa-Carballal, R ;
Quiñoá, E ;
Riguera, R ;
Sargon, MF ;
Çelik, HH ;
Demir, AS ;
Hincal, AA ;
Dalkara, T ;
Çapan, Y ;
Couvreur, P .
BIOCONJUGATE CHEMISTRY, 2005, 16 (06) :1503-1511
[6]   Formation of new glucomannan-chitosan nanoparticles and study of their ability to associate and deliver proteins [J].
Alonso-Sande, Maria ;
Cuna, Margarita ;
Remunan-Lopez, Carmen .
MACROMOLECULES, 2006, 39 (12) :4152-4158
[7]   Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system [J].
Amidi, M ;
Romeijn, SG ;
Borchard, G ;
Junginger, HE ;
Hennink, WE ;
Jiskoot, W .
JOURNAL OF CONTROLLED RELEASE, 2006, 111 (1-2) :107-116
[8]   Complement activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: Influences of surface morphology, length, and type of polysaccharide [J].
Bertholon, Isabelle ;
Vauthier, Christine ;
Labarre, Denis .
PHARMACEUTICAL RESEARCH, 2006, 23 (06) :1313-1323
[9]   Nanoparticles from chitosan [J].
Bodnár, M ;
Hartmann, JF ;
Borbély, J .
MACROMOLECULAR SYMPOSIA, 2005, 227 :321-326
[10]   Preparation and characterization of chitosan-based nanoparticles [J].
Bodnar, M ;
Hartmann, JF ;
Borbely, J .
BIOMACROMOLECULES, 2005, 6 (05) :2521-2527