Buckets, heaps, lists, and monotone priority queues

被引:31
作者
Cherkassky, BV
Goldberg, AV
Silverstein, C
机构
[1] Cent Econ & Math Inst, Moscow 117418, Russia
[2] Intertrust Technol Corp, Sunnyvale, CA 94086 USA
[3] NEC Res Inst, Princeton, NJ 08540 USA
[4] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
关键词
data structures; priority queues; shortest paths;
D O I
10.1137/S0097539796313490
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce the heap-on-top (hot) priority queue data structure that combines the multilevel bucket data structure of Denardo and Fox with a heap. Our data structure has superior operation bounds than either structure taken alone. We use the new data structure to obtain an improved bound for Dijkstra's shortest path algorithm. We also discuss a practical implementation of hot queues. Our experimental results in the context of Dijkstra's algorithm show that this implementation of hot queues performs very well and is more robust than implementations based only on heap or multilevel bucket data structures.
引用
收藏
页码:1326 / 1346
页数:21
相关论文
共 23 条
[1]  
Aho A.V., 1974, The Design and Analysis of Computer Algorithms
[2]   FASTER ALGORITHMS FOR THE SHORTEST-PATH PROBLEM [J].
AHUJA, RK ;
MEHLHORN, K ;
ORLIN, JB ;
TARJAN, RE .
JOURNAL OF THE ACM, 1990, 37 (02) :213-223
[3]  
BOAS PV, 1977, MATH SYST THEORY, V10, P99
[4]  
Brodal GS, 1996, PROCEEDINGS OF THE SEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P52
[6]   Shortest paths algorithms: Theory and experimental evaluation [J].
Cherkassky, BV ;
Goldberg, AV ;
Radzik, T .
MATHEMATICAL PROGRAMMING, 1996, 73 (02) :129-174
[7]  
CHERKASSKY BV, 1994, PROCEEDINGS OF THE FIFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P516
[8]  
CHERKASSKY BV, 1996, 964 NEC RES I
[9]  
CHERKASSKY BV, 1996, 96070 NEC RES I
[10]   DETERMINISTIC COIN TOSSING WITH APPLICATIONS TO OPTIMAL PARALLEL LIST RANKING [J].
COLE, R ;
VISHKIN, U .
INFORMATION AND CONTROL, 1986, 70 (01) :32-53