Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing

被引:793
作者
Mimitou, Eleni P. [1 ]
Symington, Lorraine S. [1 ]
机构
[1] Columbia Univ, Med Ctr, Dept Microbiol, New York, NY 10032 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature07312
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA ends exposed after introduction of double- strand breaks ( DSBs) undergo 5 '-3 ' nucleolytic degradation to generate single- stranded DNA, the substrate for binding by the Rad51 protein to initiate homologous recombination. This process is poorly understood in eukaryotes, but several factors have been implicated, including the Mre11 complex ( Mre11 - Rad50 - Xrs2/ NBS1), Sae2/ CtIP/ Ctp1 and Exo1. Here we demonstrate that yeast Exo1 nuclease and Sgs1 helicase function in alternative pathways for DSB processing. Novel, partially resected intermediates accumulate in a double mutant lacking Exo1 and Sgs1, which are poor substrates for homologous recombination. The early processing step that generates partly resected intermediates is dependent on Sae2. When Sae2 is absent, in addition to Exo1 and Sgs1, unprocessed DSBs accumulate and homology- dependent repair fails. These results suggest a two- step mechanism for DSB processing during homologous recombination. First, the Mre11 complex and Sae2 remove a small oligonucleotide( s) from the DNA ends to form an early intermediate. Second, Exo1 and/ or Sgs1 rapidly process this intermediate to generate extensive tracts of single- stranded DNA that serve as substrate for Rad51.
引用
收藏
页码:770 / U3
页数:6
相关论文
共 39 条
[1]   Interchangeable parts of the Escherichia coli recombination machinery [J].
Amundsen, SK ;
Smith, GR .
CELL, 2003, 112 (06) :741-744
[2]   Tet repressor-based system for regulated gene expression in eukaryotic cells: Principles and advances [J].
Baron, U ;
Bujard, H .
APPLICATIONS OF CHIMERIC GENES AND HYBRID PROTEINS PT B: CELL BIOLOGY AND PHYSIOLOGY, 2000, 327 :401-421
[3]   Binding specificity determines polarity of DNA unwinding by the Sgs1 protein of S-cerevisiae [J].
Bennett, RJ ;
Keck, JL ;
Wang, JC .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 289 (02) :235-248
[4]  
Borde V, 1999, MOL CELL BIOL, V19, P4832
[5]   A network of multi-tasking proteins at the DNA replication fork preserves genome stability [J].
Budd, ME ;
Tong, AHY ;
Polaczek, P ;
Peng, X ;
Boone, C ;
Campbell, JL .
PLOS GENETICS, 2005, 1 (06) :634-650
[6]   The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling [J].
Clerici, M ;
Mantiero, D ;
Lucchini, G ;
Longhese, MP .
EMBO REPORTS, 2006, 7 (02) :212-218
[7]   The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends [J].
Clerici, M ;
Mantiero, D ;
Lucchini, G ;
Longhese, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (46) :38631-38638
[8]   Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases [J].
Gangloff, S ;
Soustelle, C ;
Fabre, F .
NATURE GENETICS, 2000, 25 (02) :192-194
[9]   THE YEAST TYPE-I TOPOISOMERASE TOP3 INTERACTS WITH SGS1, A DNA HELICASE HOMOLOG - A POTENTIAL EUKARYOTIC REVERSE GYRASE [J].
GANGLOFF, S ;
MCDONALD, JP ;
BENDIXEN, C ;
ARTHUR, L ;
ROTHSTEIN, R .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (12) :8391-8398
[10]  
Goldstein AL, 1999, YEAST, V15, P1541, DOI 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO