AKT/PKB and other D3 phosphoinositide-regulated kinases: Kinase activation by phosphoinositide-dependent phosphorylation

被引:854
作者
Chan, TO [1 ]
Rittenhouse, SE [1 ]
Tsichlis, PN [1 ]
机构
[1] Thomas Jefferson Univ, Dept Microbiol & Immunol, Kimmel Canc Inst, Philadelphia, PA 19107 USA
关键词
signal transduction; phosphoinositide-binding motif; lipid kinase; lipid phosphatase;
D O I
10.1146/annurev.biochem.68.1.965
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The protein kinase Akt/PKB is activated via a multistep process by a variety of signals. In the early steps of this process, PI-3 kinase-generated D3-phosphorylated phosphoinositides bind the Akt PH domain and induce the translocation of the kinase to the plasma membrane where it co-localizes with phosphoinositide-dependent kinase-1. By binding to the PH domains of both Akt and phosphoinositide-dependent kinase-1, DS-phosphorylated phosphoinositides appear to also induce conformational changes that permit phosphoinositide-dependent kinase-1 to phosphorylate the activation loop of Akt. The paradigm of Akt activation via phosphoinositide-dependent phosphorylation provided a framework for research into the mechanism of activation of other members of the AGC kinase group (p70(S6K), PKC, and PKA) and members of the Tec tyrosine kinase family (TecI, TecII, Btk/Atk, Itk/Tsk/Emt, Txk/Rlk, and Bm/Etk). The result was the discovery that these kinases and Akt are activated by overlapping pathways. In this review, we present our current understanding of the regulation and function of the Akt kinase and we discuss the common and unique features of the activation processes of Akt and the AGC and Tec kinase families. In addition, we present an overview of the biosynthesis of phosphoinositides that contribute to the regulation of these kinases.
引用
收藏
页码:965 / 1014
页数:50
相关论文
共 335 条
[1]   Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase [J].
Ahmed, NN ;
Grimes, HL ;
Bellacosa, A ;
Chan, TO ;
Tsichlis, PN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3627-3632
[2]  
AHMED NN, 1993, ONCOGENE, V8, P1957
[3]   EGF or PDGF receptors activate atypical PKC lambda through phosphatidylinositol 3-kinase [J].
Akimoto, K ;
Takahashi, R ;
Moriya, S ;
Nishioka, N ;
Takayanagi, J ;
Kimura, K ;
Fukui, Y ;
Osada, S ;
Mizuno, K ;
Hirai, S ;
Kazlauskas, A ;
Ohno, S .
EMBO JOURNAL, 1996, 15 (04) :788-798
[4]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[5]   Mechanism of activation and function of protein kinase B [J].
Alessi, DR ;
Cohen, P .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (01) :55-62
[6]   Molecular basis for the substrate specificity of protein kinase B; Comparison with MAPKAP kinase-1 and p70 S6 kinase [J].
Alessi, DR ;
Caudwell, FB ;
Andjelkovic, M ;
Hemmings, BA ;
Cohen, P .
FEBS LETTERS, 1996, 399 (03) :333-338
[7]   3-phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase [J].
Alessi, DR ;
Deak, M ;
Casamayor, A ;
Caudwell, FB ;
Morrice, N ;
Norman, DG ;
Gaffney, P ;
Reese, CB ;
MacDougall, CN ;
Harbison, D ;
Ashworth, A ;
Bownes, M .
CURRENT BIOLOGY, 1997, 7 (10) :776-789
[8]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[9]   3 Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro [J].
Alessi, DR ;
Kozlowski, MT ;
Weng, QP ;
Morrice, N ;
Avruch, J .
CURRENT BIOLOGY, 1998, 8 (02) :69-81
[10]   Akt2 mRNA is highly expressed in embryonic brown fat and the AKT2 kinase is activated by insulin [J].
Altomare, DA ;
Lyons, GE ;
Mitsuuchi, Y ;
Cheng, JQ ;
Testa, JR .
ONCOGENE, 1998, 16 (18) :2407-2411