The efficiency of ballstep subgradient level methods for convex optimization

被引:10
作者
Kiwiel, KC
Larsson, T
Lindberg, PO
机构
[1] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
[2] Linkoping Univ, S-58183 Linkoping, Sweden
关键词
nondifferentiable optimization; convex programming; subgradient optimization; relaxation methods; level projection methods;
D O I
10.1287/moor.24.1.237
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study subgradient methods for convex optimization that use projections onto successive approximations of level sets of the objective corresponding to estimates of the optimal value. We establish convergence and efficiency estimates for simple ballstep level controls without requiring that the feasible set be compact. Our framework may handle accelerations based on "cheap" projections, surrogate constraints, and conjugate subgradient techniques.
引用
收藏
页码:237 / 254
页数:18
相关论文
共 46 条
[1]   THE RELAXATION METHOD FOR LINEAR INEQUALITIES [J].
AGMON, S .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (03) :382-392
[2]   A GENERALIZATION OF POLYAK CONVERGENCE RESULT FOR SUBGRADIENT OPTIMIZATION [J].
ALLEN, E ;
HELGASON, R ;
KENNINGTON, J ;
SHETTY, B .
MATHEMATICAL PROGRAMMING, 1987, 37 (03) :309-317
[3]  
[Anonymous], 1985, NONDIFFERENTIABLE OP
[4]  
[Anonymous], 1993, MODERN HEURISTIC TEC
[5]  
Bazaraa M.S., 2013, Nonlinear Programming-Theory and Algorithms, V3rd
[6]   ON THE CHOICE OF STEP SIZE IN SUBGRADIENT OPTIMIZATION [J].
BAZARAA, MS ;
SHERALI, HD .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1981, 7 (04) :380-388
[7]  
BERTSEKAS DP, 1995, NONLINEAR PROGRAMMIN
[8]   A DESCENT PROXIMAL LEVEL BUNDLE METHOD FOR CONVEX NONDIFFERENTIABLE OPTIMIZATION [J].
BRANNLUND, U ;
KIWIEL, KC ;
LINDBERG, PO .
OPERATIONS RESEARCH LETTERS, 1995, 17 (03) :121-126
[9]  
BRANNLUND U, 1993, THESIS ROYAL I TECHN
[10]  
Camerini P.M., 1975, MATH PROGRAM STUD, V3, P26