Hybrid hierarchical clustering with applications to microarray data

被引:95
作者
Chipman, H [1 ]
Tibshirani, R
机构
[1] Acadia Univ, Dept Math & Stat, Wolfville, NS B4P 2R6, Canada
[2] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
关键词
bottom-up clustering; mutual cluster; top-down clustering;
D O I
10.1093/biostatistics/kxj007
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a hybrid clustering method that combines the strengths of bottom-up hierarchical clustering with that of top-down clustering. The first method is good at identifying small clusters but not large ones; the strengths are reversed for the second method. The hybrid method is built on the new idea of a mutual cluster: a group of points closer to each other than to any other points. Theoretical connections between mutual clusters and bottom-up clustering methods are established, aiding in their interpretation and providing an algorithm for identification of mutual clusters. We illustrate the technique on simulated and real microarray datasets.
引用
收藏
页码:286 / 301
页数:16
相关论文
共 12 条
[1]  
Chipman H, 2003, INTERDISC STAT, P159
[2]  
Chipman HA, 1998, COMP SCI STAT, V30, P84
[3]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[4]  
Friedman J., 2001, The elements of statistical learning, V1, DOI DOI 10.1007/978-0-387-21606-5
[5]  
Gersho A., 1992, VECTOR QUANTIZATION
[6]  
Gordon A, 1999, Classification
[7]  
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
[8]  
Kaufman L., 1990, FINDING GROUPS DATA
[9]  
Kohonen T., 1989, SELF ORG ASS MEMORY
[10]  
LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489