An algorithm for a generalized maximum subsequence problem

被引:5
作者
Bernholt, T [1 ]
Hofmeister, T [1 ]
机构
[1] Univ Dortmund, D-44221 Dortmund, Germany
来源
LATIN 2006: THEORETICAL INFORMATICS | 2006年 / 3887卷
关键词
D O I
10.1007/11682462_20
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider a generalization of the maximum subsequence problem. Given an array a(1),..., a(2) of real numbers, the generalized problem consists in finding an interval [i, j] such that the length and the sum of the subsequence a(i),..., a(j) maximize a given quasiconvex function f. Problems of this type occur, e.g., in bioinformatics. We show that the generalized problem can be solved in time O(n log n). As an example, we show how the so-called multiresolution criteria problem can be solved in time O(n log n).
引用
收藏
页码:178 / 189
页数:12
相关论文
共 10 条
[1]   Longest biased interval and longest non-negative sum interval [J].
Allison, L .
BIOINFORMATICS, 2003, 19 (10) :1294-1295
[2]  
[Anonymous], 2000, Geometry, Spinors and Applications
[3]  
BENTLEY J, 1984, PROGRAMMING PEARLS
[4]  
Boyd S., 2004, CONVEX OPTIMIZATION
[5]  
CHEN KY, 2004, 15 INT S ALG COMP IS, P294
[6]   Local extremes, runs, strings and multiresolution - Rejoinder [J].
Davies, PL ;
Kovac, A .
ANNALS OF STATISTICS, 2001, 29 (01) :61-65
[7]  
Fan TH, 2003, LECT NOTES COMPUT SC, V2759, P251
[8]   Efficient algorithms for locating the length-constrained heaviest segments with applications to biomolecular sequence analysis [J].
Lin, YL ;
Jiang, T ;
Chao, KM .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2002, 65 (03) :570-586
[9]  
LIPSON D, 2005, 9 ANN INT C RES COMP
[10]  
Mulmuley K., 1994, Computational Geometry: an Introduction through Randomized Algorithms