The Bogoliubov approach to number squeezing of atoms in an optical lattice

被引:38
作者
Burnett, K
Edwards, M
Clark, CW
Shotter, M
机构
[1] Clarendon Lab, Dept Phys, Oxford OX1 3PU, England
[2] Georgia So Univ, Dept Phys, Statesboro, GA 30460 USA
[3] NIST, Div Electron & Opt Phys, Gaithersburg, MD 20899 USA
关键词
D O I
10.1088/0953-4075/35/7/305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe an approach for finding the number squeezing for arrays of atoms in an optical lattice. It is based on a straightforward extension of the Bogoliubov method. We discuss the conditions for optimizing squeezing and how to predict what will be obtained in a given experiment. We consider using the method to deal with finite temperatures. The method also appears to be extensible to inhomogeneous and time-dependent systems.
引用
收藏
页码:1671 / 1678
页数:8
相关论文
共 23 条
[1]   Time-dependent mean-field theory of the superfluid-insulator phase transition [J].
Amico, L ;
Penna, V .
PHYSICAL REVIEW B, 2000, 62 (02) :1224-1237
[2]   Topics in the microscopic theory of Bose-Einstein condensates [J].
Baym, G .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2001, 34 (23) :4541-4550
[3]  
Blaizot J.-P., 1986, Quantum Theory of Finite Systems
[4]  
Bogolyubov N. N., 1947, J. Phys. (USSR), V11, P23
[5]  
BURNETT K, 2001, CR ACAD SCI IV-PHYS, P399
[6]  
DENSCHLAG JH, 2002, IN PRESS J PHYS B
[7]   Strong-coupling expansions for the pure and disordered Bose-Hubbard model [J].
Freericks, JK ;
Monien, H .
PHYSICAL REVIEW B, 1996, 53 (05) :2691-2700
[8]   Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms [J].
Greiner, M ;
Mandel, O ;
Esslinger, T ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 415 (6867) :39-44
[9]   Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures [J].
Griffin, A .
PHYSICAL REVIEW B, 1996, 53 (14) :9341-9347
[10]   Cold bosonic atoms in optical lattices [J].
Jaksch, D ;
Bruder, C ;
Cirac, JI ;
Gardiner, CW ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (15) :3108-3111