Modeling disease in the mouse: Lessons from DNA damage response and cell cycle control genes

被引:6
作者
Adelman, CA
Petrini, JHJ
Attwooll, CL
机构
[1] Mem Sloan Kettering Canc Ctr, Program Mol Biol, New York, NY 10021 USA
[2] Cornell Univ, Grad Sch Med Sci, New York, NY 10021 USA
关键词
mouse models; penetrance; strain; genetic modifiers; compensation; tissue specificity;
D O I
10.1002/jcb.20701
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The advent of gene targeting has allowed the dissection of many essential cellular pathways, including those involved in cell cycle regulation, signal transduction, and development. However, it is becoming increasingly clear that the simple gene deletion strategy may not be sufficient for the modeling of many cancer syndromes. In this Prospect article, we will discuss the strengths and weaknesses of mouse models, how they have advanced from gene deletions to truncations, point mutations, and conditional mouse models in which expression or loss of the gene of interest is controlled either temporally or spatially. We will also consider future directions for the use of mouse models in cancer. The vastness of the field necessitates focusing on a few specific examples with the unfortunate exclusion of many excellent Studies from our discussion. As such, we focus on a few specific models of human cancer syndromes, however many of the themes discussed here are applicable to other systems of genetic manipulation and may be applied across fields.
引用
收藏
页码:459 / 473
页数:15
相关论文
共 92 条
[1]   The ATM gene and breast cancer:: is it really a risk factor? [J].
Angèle, S ;
Hall, J .
MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH, 2000, 462 (2-3) :167-178
[2]   Absence of mutations in the ATM gene in breast cancer patients with severe responses to radiotherapy [J].
Appleby, JM ;
Barber, JBP ;
Levine, E ;
Varley, JM ;
Taylor, AMR ;
Stankovic, T ;
Heighway, J ;
Warren, C ;
Scott, D .
BRITISH JOURNAL OF CANCER, 1997, 76 (12) :1546-1549
[3]   Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice [J].
Artandi, SE ;
Chang, S ;
Lee, SL ;
Alson, S ;
Gottlieb, GJ ;
Chin, L ;
DePinho, RA .
NATURE, 2000, 406 (6796) :641-645
[4]   Initiating cellular stress responses [J].
Bakkenist, CJ ;
Kastan, MB .
CELL, 2004, 118 (01) :9-17
[5]  
Barlow C, 1998, DEVELOPMENT, V125, P4007
[6]   Atm-deficient mice: A paradigm of ataxia telangiectasia [J].
Barlow, C ;
Hirotsune, S ;
Paylor, R ;
Liyanage, M ;
Eckhaus, M ;
Collins, F ;
Shiloh, Y ;
Crawley, JN ;
Ried, T ;
Tagle, D ;
WynshawBoris, A .
CELL, 1996, 86 (01) :159-171
[7]   Partial rescue of the prophase I defects of Atm-deficient mice by p53 and p21 null alleles [J].
Barlow, C ;
Liyanage, M ;
Moens, PB ;
Deng, CX ;
Ried, T ;
WynshawBoris, A .
NATURE GENETICS, 1997, 17 (04) :462-466
[8]   Atm haploinsufficiency results in increased sensitivity to sublethal doses of ionizing radiation in mice [J].
Barlow, C ;
Eckhaus, MA ;
Schäffer, AA ;
Wynshaw-Boris, A .
NATURE GENETICS, 1999, 21 (04) :359-360
[9]   Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome [J].
Bell, DW ;
Varley, JM ;
Szydlo, TE ;
Kang, DH ;
Wahrer, DCR ;
Shannon, KE ;
Lubratovich, M ;
Verselis, SJ ;
Isselbacher, KJ ;
Fraumeni, JF ;
Birch, JM ;
Li, FP ;
Garber, JE ;
Haber, DA .
SCIENCE, 1999, 286 (5449) :2528-2531
[10]   SPO11 is required for sex-body formation, and Spo11 heterozygosity rescues the prophase arrest of Atm-/- spermatocytes [J].
Bellani, MA ;
Romanienko, PJ ;
Cairatti, DA ;
Camerini-Otero, RD .
JOURNAL OF CELL SCIENCE, 2005, 118 (15) :3233-3245