Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice

被引:623
作者
Schneider, U. [1 ]
Hackermueller, L. [1 ]
Will, S. [1 ]
Best, Th. [1 ]
Bloch, I. [1 ,2 ]
Costi, T. A. [3 ,4 ]
Helmes, R. W. [5 ]
Rasch, D. [5 ]
Rosch, A. [5 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
[5] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
关键词
D O I
10.1126/science.1165449
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fermionic Hubbard model plays a fundamental role in the description of strongly correlated materials. We have realized this Hamiltonian in a repulsively interacting spin mixture of ultracold K-40 atoms in a three- dimensional ( 3D) optical lattice. Using in situ imaging and independent control of external confinement and lattice depth, we were able to directly measure the compressibility of the quantum gas in the trap. Together with a comparison to ab initio dynamical mean field theory calculations, we show how the system evolves for increasing confinement from a compressible dilute metal over a strongly interacting Fermi liquid into a band- insulating state. For strong interactions, we find evidence for an emergent incompressible Mott insulating phase. This demonstrates the potential to model interacting condensed- matter systems using ultracold fermionic atoms.
引用
收藏
页码:1520 / 1525
页数:6
相关论文
共 34 条
[1]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[2]   Direct, nondestructive observation of a bose condensate [J].
Andrews, MR ;
Mewes, MO ;
vanDruten, NJ ;
Durfee, DS ;
Kurn, DM ;
Ketterle, W .
SCIENCE, 1996, 273 (5271) :84-87
[3]   Direct observation of Anderson localization of matter waves in a controlled disorder [J].
Billy, Juliette ;
Josse, Vincent ;
Zuo, Zhanchun ;
Bernard, Alain ;
Hambrecht, Ben ;
Lugan, Pierre ;
Clement, David ;
Sanchez-Palencia, Laurent ;
Bouyer, Philippe ;
Aspect, Alain .
NATURE, 2008, 453 (7197) :891-894
[4]   Finite-temperature numerical renormalization group study of the Mott transition [J].
Bulla, R ;
Costi, TA ;
Vollhardt, D .
PHYSICAL REVIEW B, 2001, 64 (04)
[5]   Numerical renormalization group method for quantum impurity systems [J].
Bulla, Ralf ;
Costi, Theo A. ;
Pruschke, Thomas .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :395-450
[6]  
FISHER MPA, 1989, PHYS REV B, V40, P546, DOI [10.1103/PhysRevB.40.546, 10.1063/1.38820]
[7]   Formation of spatial shell structure in the superfluid to Mott insulator transition [J].
Foelling, Simon ;
Widera, Artur ;
Mueller, Torben ;
Gerbier, Fabrice ;
Bloch, Immanuel .
PHYSICAL REVIEW LETTERS, 2006, 97 (06)
[8]  
Gebhard F., 1997, MOTT METAL INSULATOR
[9]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[10]   Probing number squeezing of ultracold atoms across the superfluid-Mott insulator transition [J].
Gerbier, F ;
Fölling, S ;
Widera, A ;
Mandel, O ;
Bloch, I .
PHYSICAL REVIEW LETTERS, 2006, 96 (09) :1-4