New method for computing expansion coefficients for spheroidal functions

被引:13
作者
Eide, HA
Stamnes, JJ
Stamnes, K
Schulz, FM
机构
[1] Univ Alaska, Inst Geophys, Fairbanks, AK 99775 USA
[2] Univ Bergen, Dept Phys, N-5020 Bergen, Norway
[3] Univ Rochester, Rochester Theory Ctr Opt Sci & Engn, Rochester, NY 14627 USA
关键词
D O I
10.1016/S0022-4073(99)00015-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An efficient and reliable method is presented for computing the expansion coefficients in the eigenfunction series representing the prolate and oblate spheroidal functions. While the traditional method is based on recurrence relations, infinite continued fractions, and a variational procedure, the new method is based on reformulating the computational task as an eigenvalue problem. In contrast with the traditional method, the new method requires no initial estimates of the eigenvalues, and the computations can be performed using readily available computer library routines. The new method is shown to produce accurate expansion coefficients for the spheroidal functions required to study scattering by particles with a wide range of shapes, sizes, and complex refractive indices. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:191 / 203
页数:13
相关论文
共 24 条
[1]  
Anderson E., 1995, LAPACK USERS GUIDE
[2]  
[Anonymous], 1964, Handbook of mathematical functions
[3]   LIGHT-SCATTERING BY RANDOMLY ORIENTED SPHEROIDAL PARTICLES [J].
ASANO, S ;
SATO, M .
APPLIED OPTICS, 1980, 19 (06) :962-974
[4]   LIGHT-SCATTERING BY A SPHEROIDAL PARTICLE [J].
ASANO, S ;
YAMAMOTO, G .
APPLIED OPTICS, 1975, 14 (01) :29-49
[5]  
BLANCH GJ, 1946, MATH PHYS, V25, P11
[6]   ON SPHEROIDAL WAVE FUNCTIONS OF ORDER ZERO [J].
BOUWKAMP, CJ .
JOURNAL OF MATHEMATICS AND PHYSICS, 1947, 26 (02) :79-92
[7]  
BOUWKAMP CJ, 1941, THESIS GRONINGEN GRO
[8]  
Flammer C., 1957, SPHEROIDAL WAVE FUNC
[9]  
HANISH S, 1970, TABLES RADIAL SPHERO, V1
[10]  
Ince E.L., 1927, P ROY SOC EDINB, V46, P20