Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle?

被引:270
作者
Touw, Wouter G. [1 ]
Bayjanov, Jumamurat R. [2 ]
Overmars, Lex [3 ]
Backus, Lennart [2 ]
Boekhorst, Jos
Wels, Michiel
van Hijum, Sacha A. F. T. [4 ]
机构
[1] Radboud Univ Nijmegen, Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Ctr Mol & Biomol Informat, Nijmegen, Netherlands
[4] Radboud Univ Nijmegen, Med Ctr, Genom Grp, Ctr Mol & Biomol Informat, Nijmegen, Netherlands
关键词
Random Forest; variable importance; local importance; conditional relationships; variable interaction; proximity; VARIABLE IMPORTANCE MEASURES; AMINO-ACID; SYSTEMS BIOLOGY; PREDICTION; IDENTIFICATION; MICROARRAY; CLASSIFICATION; PROTEINS; MODEL; CLASSIFIERS;
D O I
10.1093/bib/bbs034
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approaches are required to extract the complex non-linear trends present in omics data. Classification techniques allow training a model based on variables (e.g. SNPs in genetic association studies) to separate different classes (e.g. healthy subjects versus patients). Random Forest (RF) is a versatile classification algorithm suited for the analysis of these large data sets. In the Life Sciences, RF is popular because RF classification models have a high-prediction accuracy and provide information on importance of variables for classification. For omics data, variables or conditional relations between variables are typically important for a subset of samples of the same class. For example: within a class of cancer patients certain SNP combinations may be important for a subset of patients that have a specific subtype of cancer, but not important for a different subset of patients. These conditional relationships can in principle be uncovered from the data with RF as these are implicitly taken into account by the algorithm during the creation of the classification model. This review details some of the to the best of our knowledge rarely or never used RF properties that allow maximizing the biological insights that can be extracted from complex omics data sets using RF.
引用
收藏
页码:315 / 326
页数:12
相关论文
共 113 条
[1]  
Alvarez S, 2005, CLIN CANCER RES, V11, P1146
[2]  
[Anonymous], PLOS ONE
[3]  
[Anonymous], A language and environment for statistical computing
[4]   Enterotypes of the human gut microbiome [J].
Arumugam, Manimozhiyan ;
Raes, Jeroen ;
Pelletier, Eric ;
Le Paslier, Denis ;
Yamada, Takuji ;
Mende, Daniel R. ;
Fernandes, Gabriel R. ;
Tap, Julien ;
Bruls, Thomas ;
Batto, Jean-Michel ;
Bertalan, Marcelo ;
Borruel, Natalia ;
Casellas, Francesc ;
Fernandez, Leyden ;
Gautier, Laurent ;
Hansen, Torben ;
Hattori, Masahira ;
Hayashi, Tetsuya ;
Kleerebezem, Michiel ;
Kurokawa, Ken ;
Leclerc, Marion ;
Levenez, Florence ;
Manichanh, Chaysavanh ;
Nielsen, H. Bjorn ;
Nielsen, Trine ;
Pons, Nicolas ;
Poulain, Julie ;
Qin, Junjie ;
Sicheritz-Ponten, Thomas ;
Tims, Sebastian ;
Torrents, David ;
Ugarte, Edgardo ;
Zoetendal, Erwin G. ;
Wang, Jun ;
Guarner, Francisco ;
Pedersen, Oluf ;
de Vos, Willem M. ;
Brunak, Soren ;
Dore, Joel ;
Weissenbach, Jean ;
Ehrlich, S. Dusko ;
Bork, Peer .
NATURE, 2011, 473 (7346) :174-180
[5]   Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information [J].
Bao, L ;
Cui, Y .
BIOINFORMATICS, 2005, 21 (10) :2185-2190
[6]   PhenoLink - a web-tool for linking phenotype to ∼omics data for bacteria: application to gene-trait matching for Lactobacillus plantarum strains [J].
Bayjanov, Jumamurat R. ;
Molenaar, Douwe ;
Tzeneva, Vesela ;
Siezen, Roland J. ;
van Hijum, Sacha A. F. T. .
BMC GENOMICS, 2012, 13
[7]  
Bellman RE, 1957, RANDCORPORATION DYNA, P342
[8]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[9]   Predicting protein-protein binding sites in membrane proteins [J].
Bordner, Andrew J. .
BMC BIOINFORMATICS, 2009, 10 :312
[10]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401