ADJOINT SENSITIVITY ANALYSIS FOR DIFFERENTIAL-ALGEBRAIC EQUATIONS: THE ADJOINT DAE SYSTEM AND ITS NUMERICAL SOLUTION

被引:275
作者
Cao, Yang [1 ]
Li, Shengtai [2 ]
Petzold, Linda [1 ]
Serban, Radu [3 ]
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA
关键词
sensitivity analysis; DAE; adjoint method;
D O I
10.1137/S1064827501380630
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An adjoint sensitivity method is presented for parameter-dependent differential-algebraic equation systems (DAEs). The adjoint system is derived, along with conditions for its consistent initialization, for DAEs of index up to two (Hessenberg). For stable linear DAEs, stability of the adjoint system (for semi-explicit DAEs) or of an augmented adjoint system (for fully implicit DAEs) is shown. In addition, it is shown for these systems that numerical stability is maintained for the adjoint system or for the augmented adjoint system.
引用
收藏
页码:1076 / 1089
页数:14
相关论文
共 26 条
[1]  
[Anonymous], 2000, RESULTS MATH, DOI DOI 10.1007/BF03322509
[2]  
[Anonymous], UNIFIED APPROACH LIN
[3]  
[Anonymous], TECHNICAL REPORT
[4]  
Ascher U.M., 1998, COMPUTER METHODS ORD, V61
[5]   STABILITY OF COMPUTATIONAL METHODS FOR CONSTRAINED DYNAMICS SYSTEMS [J].
ASCHER, UM ;
PETZOLD, LR .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (01) :95-120
[6]   Boundary conditions and their transfer for differential-algebraic equations of index 1 [J].
Balla, K .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (10) :1-5
[7]   Transfer of boundary conditions for DAEs of index 1 [J].
Balla, K ;
Marz, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (06) :2318-2332
[8]   Linear subspaces for linear DAEs of index 1 [J].
Balla, K .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (4-5) :81-86
[9]  
Bischof C.H., 1992, Sci. Program., V1, P11, DOI [DOI 10.1155/1992/717832, 10.1155/1992/717832]
[10]  
Brenan KE, 1995, NUMERICAL SOLUTION I