Pyrolysis of Cellulose under Ammonia Leads to Nitrogen-Doped Nanoporous Carbon Generated through Methane Formation

被引:321
作者
Luo, Wei [1 ]
Wang, Bao [1 ]
Heron, Christopher G. [1 ]
Allen, Marshall J. [1 ]
Morre, Jeff [1 ]
Maier, Claudia S. [1 ]
Stickle, William F. [2 ]
Ji, Xiulei [1 ]
机构
[1] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA
[2] Hewlett Packard Corp, Corvallis, OR 97330 USA
关键词
Nanoporous carbon; NH3; activation; nitrogen doping; methane formation; ACTIVATED CARBON; POROUS CARBON; GRAPHENE SHEETS; PERFORMANCE; REDUCTION; PRECURSORS; OXIDE; NANOTUBES; CAPACITY; CATALYST;
D O I
10.1021/nl500859p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here, we present a simple one-step fabrication methodology for nitrogen-doped (N-doped) nanoporous carbon membranes via annealing cellulose filter paper under NH3. We found that nitrogen doping (up to 10.3 at %) occurs during cellulose pyrolysis under NH3 at as low as 550 degrees C. At 700 degrees C or above, N-doped carbon further reacts with NH3, resulting in a large surface area (up to 1973.3 m(2)/g). We discovered that the doped nitrogen, in fact, plays an important role in the reaction, leading to carbon gasification. CH4 was experimentally detected by mass spectrometry as a product in the reaction between N-doped carbon and NH3. When compared to conventional activated carbon (1533.6 m(2)/g), the N-doped nanoporous carbon (1326.5 m(2)/g) exhibits more than double the unit area capacitance (90 vs 41 mF/m(2)).
引用
收藏
页码:2225 / 2229
页数:5
相关论文
共 53 条
[1]   Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes [J].
Arrigo, Rosa ;
Haevecker, Michael ;
Schloegl, Robert ;
Su, Dang Sheng .
CHEMICAL COMMUNICATIONS, 2008, (40) :4891-4893
[2]   Tuning the Acid/Base Properties of Nanocarbons by Functionalization via Amination [J].
Arrigo, Rosa ;
Haevecker, Michael ;
Wrabetz, Sabine ;
Blume, Raoul ;
Lerch, Martin ;
McGregor, James ;
Parrott, Edward P. J. ;
Zeitler, J. Axel ;
Gladden, Lynn F. ;
Knop-Gericke, Axel ;
Schloegl, Robert ;
Su, Dang Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (28) :9616-9630
[3]   Oxygen plasma modification of pitch-based isotropic carbon fibres [J].
Boudou, JP ;
Paredes, JI ;
Cuesta, A ;
Martínez-Alonso, A ;
Tascón, JMD .
CARBON, 2003, 41 (01) :41-56
[4]   A Nitrogen-Doped Graphene/Carbon Nanotube Nanocomposite with Synergistically Enhanced Electrochemical Activity [J].
Chen, Ping ;
Xiao, Tian-Yuan ;
Qian, Yu-Hong ;
Li, Shan-Shan ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (23) :3192-3196
[5]   Nitrogen-Doped Graphene/ZnSe Nanocomposites: Hydrothermal Synthesis and Their Enhanced Electrochemical and Photocatalytic Activities [J].
Chen, Ping ;
Xiao, Tian-Yuan ;
Li, Hui-Hui ;
Yang, Jing-Jing ;
Wang, Zheng ;
Yao, Hong-Bin ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (01) :712-719
[6]   Highly Active and Durable Core-Corona Structured Bifunctional Catalyst for Rechargeable Metal-Air Battery Application [J].
Chen, Zhu ;
Yu, Aiping ;
Higgins, Drew ;
Li, Hui ;
Wang, Haijiang ;
Chen, Zhongwei .
NANO LETTERS, 2012, 12 (04) :1946-1952
[7]   Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells [J].
Chen, Zhu ;
Higgins, Drew ;
Chen, Zhongwei .
CARBON, 2010, 48 (11) :3057-3065
[8]   Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications [J].
Chen, Zhu ;
Higgins, Drew ;
Tao, Haisheng ;
Hsu, Ryan S. ;
Chen, Zhongwei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (49) :21008-21013
[9]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[10]   Evolution of the Composition and Suspension Performance of Nitrogen-Doped Graphene [J].
Hasan, Saad A. ;
Tsekoura, Eleni K. ;
Sternhagen, Victoria ;
Stromme, Maria .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (11) :6530-6536