Prediction on tribological properties of short fibre composites using artificial neural networks

被引:121
作者
Zhang, Z
Friedrich, K
Velten, K
机构
[1] Univ Kaiserslautern, Inst Composite Mat Ltd, D-67663 Kaiserslautern, Germany
[2] Fachhochsch Wiesbaden, D-65366 Geisenheim, Germany
关键词
artificial neural network; tribological properties; short fibre reinforced thermoplastics; parameter prediction; material design and optimisation;
D O I
10.1016/S0043-1648(02)00023-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Using a multiple-layer feed-forward artificial neural network (ANN), the specific wear rate and frictional coefficient have been predicted based on a measured database for short fibre reinforced polyamide 4.6 (PA4.6) composites. The results show that the predicted data are well acceptable when comparing them to the real test values. The predictive quality of the ANN can be further improved by enlarging the training datasets and by optimising the network construction. A well-trained ANN is expected to be very helpful for an optimum design of composite materials, for a particular tribological application and for systematic parameter studies. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:668 / 675
页数:8
相关论文
共 7 条
[1]  
Demuth H., 2004, Neural Network Toolbox For Use with MATLAB (Version 4)
[2]  
FRIEDRICH K, 2002, IN PRESS J ENG TRIBO
[3]   Preliminary investigation of neural network techniques to predict tribological properties [J].
Jones, SP ;
Jansen, R ;
Fusaro, RL .
TRIBOLOGY TRANSACTIONS, 1997, 40 (02) :312-320
[4]   On the tribological behaviour of selected, injection moulded thermoplastic composites [J].
Reinicke, R ;
Haupert, F ;
Friedrich, K .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 1998, 29 (07) :763-771
[5]  
REINICKE R, 2001, IVW SCHRIFTENREIHE, V21
[6]   Abrasive wear resistance of TiN/NbN multi-layers: Measurement and neural network modelling [J].
Rutherford, KL ;
Hatto, PW ;
Davies, C ;
Hutchings, IM .
SURFACE & COATINGS TECHNOLOGY, 1996, 86-7 (1-3) :472-479
[7]   Wear volume prediction with artificial neural networks [J].
Velten, K ;
Reinicke, R ;
Friedrich, K .
TRIBOLOGY INTERNATIONAL, 2000, 33 (10) :731-736