The predictability problems in numerical weather and climate prediction

被引:80
作者
Mu, M [1 ]
Duan, WS [1 ]
Wang, JC [1 ]
机构
[1] Chinese Acad Sci, LASG, Inst Atmospher Phys, Beijing 100029, Peoples R China
关键词
predictability; weather; climate; numerical model; optimization;
D O I
10.1007/s00376-002-0016-x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Uncertainties caused by the errors of the initial states and the parameters in the numerical model are investigated. Three problems of predictability in numerical weather and climate prediction are proposed, which are related to the maximum predictable time, the maximum prediction error, and the maximum admissible errors of the initial values and the parameters in the model respectively. The three problems are then formulated into nonlinear optimization problems, Effective approaches to deal with these nonlinear optimization problems are provided, The Lorenz' model is employed to demonstrate how to use these ideas in dealing with these three problems.
引用
收藏
页码:191 / 204
页数:14
相关论文
共 17 条
[1]  
Fan Y, 2000, J CLIMATE, V13, P3298, DOI 10.1175/1520-0442(2000)013<3298:HPDOTN>2.0.CO
[2]  
2
[3]  
Lacarra J.-F., 1988, Tellus, Series A (Dynamic Meteorology and Oceanography), V40A, P81, DOI 10.1111/j.1600-0870.1988.tb00408.x
[4]  
Li JP, 2000, SCI CHINA SER E, V43, P449
[5]   ON THE LIMITED MEMORY BFGS METHOD FOR LARGE-SCALE OPTIMIZATION [J].
LIU, DC ;
NOCEDAL, J .
MATHEMATICAL PROGRAMMING, 1989, 45 (03) :503-528
[6]  
Lorenz E.N., 1965, TELLUS, V17, P321, DOI [DOI 10.1111/J.2153-3490.1965.TB01424.X, 10.1111/j.2153-3490.1965.tb01424.x, DOI 10.3402/TELLUSA.V17I3.9076]
[7]  
LORENZ EN, 1965, J ATMOS SCI, V20, P78
[8]   Nonlinear singular vectors and nonlinear singular values [J].
Mu, M .
SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2000, 43 (04) :375-385
[9]  
Mu M, 2000, ADV ATMOS SCI, V17, P375
[10]   Nonlinear fastest growing perturbation and the first kind of predictability [J].
Mu, M ;
Wang, JC .
SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2001, 44 (12) :1128-1139