Polynomial wavelets on the interval

被引:14
作者
Kilgore, T [1 ]
Prestin, J [1 ]
机构
[1] UNIV ROSTOCK, FACHBEREICH MATH, D-18051 ROSTOCK, GERMANY
关键词
wavelets; Chebyshev polynomials; interpolation; reconstruction; decomposition;
D O I
10.1007/s003659900004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a polynomial wavelet decomposition of the L(2)(-1, 1)-space with Chebyshev weight, where the wavelets fulfill certain interpolatory conditions. For this approach we obtain the two-scale relations and decomposition formulas. Dual functions and Riesz-stability are discussed.
引用
收藏
页码:95 / 110
页数:16
相关论文
共 17 条
[1]  
Chui C. K., 1992, An introduction to wavelets, V1
[2]   ON COMPACTLY SUPPORTED SPLINE WAVELETS AND A DUALITY PRINCIPLE [J].
CHUI, CK ;
WANG, JZ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 330 (02) :903-915
[3]   ON TRIGONOMETRIC WAVELETS [J].
CHUI, CK ;
MHASKAR, HN .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) :167-190
[4]  
DAUBECHIES I, 1992, CBMS NSF REG C P, V61
[5]   POSITIVITY OF THE WEIGHTS OF EXTENDED CLENSHAW-CURTIS QUADRATURE-RULES [J].
HASEGAWA, T ;
SUGIURA, H ;
TORII, T .
MATHEMATICS OF COMPUTATION, 1993, 60 (202) :719-734
[6]  
MEYER Y, 1990, ONDOLETTES OPERATEUR
[7]  
MIN G, 1990, P AM MATH SOC, V116, P1081
[8]   UNILATERAL APPROXIMATION BY POLYNOMIALS APPLICATIONS [J].
NEVAI, GP .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (3-4) :495-506
[9]   MEAN CONVERGENCE OF LAGRANGE INTERPOLATION .3. [J].
NEVAI, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :669-698
[10]  
PRESTIN J, 1993, NUMER ALGORITHMS, V5, P179