Phosphorescence Color Tuning by Ligand, and Substituent Effects of Multifunctional Iridium(III) Cyclometalates with 9-Arylcarbazole Moieties

被引:128
作者
Ho, Cheuk-Lam [1 ]
Wang, Qi [3 ]
Lam, Ching-Shan [1 ]
Wong, Wai-Yeung [1 ,2 ]
Ma, Dongge [3 ]
Wang, Lixiang [3 ]
Gao, Zhi-Qiang [2 ]
Chen, Chin-Hsin [2 ]
Cheah, Kok-Wai [2 ]
Lin, Zhenyang [4 ]
机构
[1] Hong Kong Baptist Univ, Dept Chem, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Ctr Adv Luminescence Mat, Kowloon, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Chem, Hong Kong, Hong Kong, Peoples R China
关键词
carbazole; color tuning; iridium complexes; organic light-emitting diodes; phosphorescence; LIGHT-EMITTING-DIODES; EFFECTIVE CORE POTENTIALS; HIGH-EFFICIENCY; ORGANIC ELECTROPHOSPHORESCENCE; IR(III) COMPLEXES; TRIPLET EMITTERS; HOST MATERIALS; PHOTOPHYSICAL PROPERTIES; MOLECULAR CALCULATIONS; RED PHOSPHORESCENCE;
D O I
10.1002/asia.200800226
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The synthesis, isomeric studies, and photophysical characterization of a series of multifunctional cyclometalated iridium(III) complexes containing a fluoro- or methyl-substituted 2[3-(N-plienylcarbazolyl)]pyridine molecular framework are presented. All of the complexes are thermally stable solids and highly efficient electrophosphors. The optical, electrochemical, photo-, and electrophosphorescence traits of these iridium phosphors have been studied in terms of the electronic nature and coordinating site of the aryl or pyridyl ring substituents. The correlation between the functional properties of these phosphors and the results of density functional theory calculations was made. Arising from the propensity of the electron-rich carbazolyl group to facilitate hole injection/transport, the presence of such a moiety can increase the highest-occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent phosphor with 2-phenylpyridine ligands. Remarkably, the excited-state properties can be manipulated through ligand and substituent effects that allow the tuning of phosphorescence energies from bluish green to deep red. Electrophosphorescent organic light-emitting diodes (OLEDs) with outstanding device performance can be fabricated based on these materials, which show a maximum current efficiency of approximately 43.4 cd A(-1), corresponding to an external quantum efficiency of approximately 12.9% ph/el (photons per electron) and a power efficiency of approximately 33.4 Lm W-1 for the best device. The present work provides a new avenue for the rational design of multifunctional iridium-carbazolyl electrophosphors, by synthetically tailoring the carbazolyl pyridine ring that can reveal a superior device performance coupled with good color-tuning versatility, suitable for multicolor-display technology.
引用
收藏
页码:89 / 103
页数:15
相关论文
共 114 条
[1]   High-efficiency red electrophosphorescence devices [J].
Adachi, C ;
Baldo, MA ;
Forrest, SR ;
Lamansky, S ;
Thompson, ME ;
Kwong, RC .
APPLIED PHYSICS LETTERS, 2001, 78 (11) :1622-1624
[2]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[3]   Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials [J].
Adachi, C ;
Kwong, RC ;
Djurovich, P ;
Adamovich, V ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 2001, 79 (13) :2082-2084
[4]  
[Anonymous], 2007, ANGEW CHEM
[5]   Solution-processable red phosphorescent dendrimers for light-emitting device applications [J].
Anthopoulos, TD ;
Frampton, MJ ;
Namdas, EB ;
Burn, PL ;
Samuel, IDW .
ADVANCED MATERIALS, 2004, 16 (06) :557-+
[6]   Phosphorescent materials for application to organic light emitting devices [J].
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
PURE AND APPLIED CHEMISTRY, 1999, 71 (11) :2095-2106
[7]   Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation [J].
Baldo, MA ;
Adachi, C ;
Forrest, SR .
PHYSICAL REVIEW B, 2000, 62 (16) :10967-10977
[8]   Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J].
Baldo, MA ;
Lamansky, S ;
Burrows, PE ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 1999, 75 (01) :4-6
[9]   High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer [J].
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
NATURE, 2000, 403 (6771) :750-753
[10]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154