Fractional kinetics and accelerator modes

被引:53
作者
Zaslavsky, GM [1 ]
Niyazov, BA [1 ]
机构
[1] NYU, DEPT PHYS, NEW YORK, NY 10003 USA
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 1997年 / 283卷 / 1-4期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0370-1573(96)00054-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Kinetic properties of chaotic dynamics are studied for the web-map. It is shown that depending on the values of the perturbation parameter K, there are alternative possibilities: kinetics, of the quasilinear (normal, i.e. Gaussian) type or kinetics of the anomalous (Levyan) type. If K is close to the Values K = l pi when the accelerator modes occur, then there is superdiffusion with anomalous values of the transport exponent. We consider self-similar properties of trajectories near the islands in the phase space. Fractional kinetic equation is proposed and fractal exponents are obtained. Local properties of trajectories (exit time) and nonlocal ones (Poincare cycles) are studied and compared for the normal and anomalous kinetics. It is shown that the power-like law of the trapping distribution function imposes the same kind of asymptotics for the Poincare cycles distribution.
引用
收藏
页码:73 / 93
页数:21
相关论文
共 41 条
[1]   THE WIDTH OF THE STOCHASTIC WEB AND PARTICLE DIFFUSION ALONG THE WEB [J].
AFANASIEV, VV ;
CHERNIKOV, AA ;
SAGDEEV, RZ ;
ZASLAVSKY, GM .
PHYSICS LETTERS A, 1990, 144 (4-5) :229-236
[2]  
BELOSHAPKIN VV, 1983, PHYS LETT A, V97, P121, DOI 10.1016/0375-9601(83)90191-3
[3]   EXIT TIMES AND CHAOTIC TRANSPORT IN HAMILTONIAN-SYSTEMS [J].
BENKADDA, S ;
ELSKENS, Y ;
RAGOT, B ;
MENDONCA, JT .
PHYSICAL REVIEW LETTERS, 1994, 72 (18) :2859-2862
[4]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[5]   ANOMALOUS TRANSPORT OF STREAMLINES DUE TO THEIR CHAOS AND THEIR SPATIAL TOPOLOGY [J].
CHERNIKOV, AA ;
PETROVICHEV, BA ;
ROGALSKY, AV ;
SAGDEEV, RZ ;
ZASLAVSKY, GM .
PHYSICS LETTERS A, 1990, 144 (03) :127-133
[6]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[7]   CORRELATION-PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN-SYSTEMS [J].
CHIRIKOV, BV ;
SHEPELYANSKY, DL .
PHYSICA D, 1984, 13 (03) :395-400
[8]   GENERAL-APPROACH TO DIFFUSION OF PERIODICALLY KICKED CHARGES IN A MAGNETIC-FIELD [J].
DANA, I ;
AMIT, M .
PHYSICAL REVIEW E, 1995, 51 (04) :R2731-R2734
[9]  
DRUMMOND WE, 1962, NUCL FUSION, P1049
[10]   STOCHASTICITY IN CLASSICAL HAMILTONIAN-SYSTEMS - UNIVERSAL ASPECTS [J].
ESCANDE, DF .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 121 (3-4) :165-261