LEARNING RATES FOR DENSITY LEVEL DETECTION

被引:6
作者
Scovel, Clint [1 ]
Hush, Don [1 ]
Steinwart, Ingo [1 ]
机构
[1] Los Alamos Natl Lab, CCS 3, Modeling Algorithms & Informat Grp, Los Alamos, NM 87545 USA
关键词
Anomaly detection; learning theory; rates; density level detection;
D O I
10.1142/S0219530505000625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we address learning rates for the density level detection (DLD) problem. We begin by proving a "No Free Lunch Theorem" showing that rates cannot be obtained in general. Then, we apply a recently established classification framework to obtain rates for DLD support vector machines under mild assumptions on the density.
引用
收藏
页码:357 / 371
页数:15
相关论文
共 14 条
[1]   Learning distributions by their density levels: A paradigm for learning without a teacher [J].
BenDavid, S ;
Lindenbaum, M .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) :171-182
[2]   Cluster analysis: a further approach based on density estimation [J].
Cuevas, A ;
Febrero, M ;
Fraiman, R .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 36 (04) :441-459
[3]  
Devroye L., 1996, A probabilistic theory of pattern recognition
[4]  
Hartigan J. A., 1987, J AM STAT ASSOC, V82, P267, DOI DOI 10.1080/01621459.1987.10478428
[5]  
Hartigan J. A., 1975, CLUSTERING ALGORITHM
[6]   EXCESS MASS ESTIMATES AND TESTS FOR MULTIMODALITY [J].
MULLER, DW ;
SAWITZKI, G .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (415) :738-746
[7]   MEASURING MASS CONCENTRATIONS AND ESTIMATING DENSITY CONTOUR CLUSTERS - AN EXCESS MASS APPROACH [J].
POLONIK, W .
ANNALS OF STATISTICS, 1995, 23 (03) :855-881
[8]  
SAWITZKI G, 1996, DATA KNOWLEDGE THEOR, P203
[9]  
Steinwart I, 2005, J MACH LEARN RES, V6, P211
[10]  
STEINWART I, 2005, NEURAL INF PROCESS S, V17, P1337