Sirtuin 1 (SIRT1) sequence variation is not associated with exceptional human longevity

被引:62
作者
Flachsbart, F
Croucher, PJP
Nikolaus, S
Hampe, J
Cordes, C
Schreiber, S
Nebel, A
机构
[1] Univ Hosp Schleswig Holstein, Inst Med Informat & Stat, D-24105 Kiel, Germany
[2] Univ Hosp Schleswig Holstein, Inst Clin Mol Biol, D-24105 Kiel, Germany
[3] Univ Hosp Schleswig Holstein, Hosp Gen Internal Med, D-24105 Kiel, Germany
关键词
case control association design; centenarians; long-lived individuals; ageing; single nucleotide polymorphism (SNP); haplotype-tagging; lifespan extension; model organisms; calorie restriction;
D O I
10.1016/j.exger.2005.09.008
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
The SIR2/Sirt1 gene has been demonstrated as regulating lifespan in many model organisms, including yeast, Caenorhabditis elegans and rodents. These findings render the human homologue, SIRT1, a very plausible candidate as a modifier of human life expectancy. We therefore sought to investigate whether common allelic variation in the SIRT1 gene was associated with human longevity. Five single nucleotide polymorphisms (SNPs), distributed across the entire gene, including the promoter region, were genotyped in our extensive DNA collections of 1573 long-lived individuals (centenarians and nonagenarians) and matched younger controls. Four of the markers were haplotype-tagging SNPs (htSNPs) that defined five common haplotypes. No evidence for an association was detected between any of the tested SNPs and the longevity phenotype at the allele, genotype or haplotype levels. These findings, based on an htSNP approach, suggest that there is no noteworthy influence of SIRT1 sequence variation on exceptional human longevity in the German population. However, this does not rule out the possibility that allelic variants in direct regulators or downstream substrates of SIRT1 could play critical roles in extending lifespan in humans.
引用
收藏
页码:98 / 102
页数:5
相关论文
共 28 条
[1]   Haploview: analysis and visualization of LD and haplotype maps [J].
Barrett, JC ;
Fry, B ;
Maller, J ;
Daly, MJ .
BIOINFORMATICS, 2005, 21 (02) :263-265
[2]   Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase [J].
Brunet, A ;
Sweeney, LB ;
Sturgill, JF ;
Chua, KF ;
Greer, PL ;
Lin, YX ;
Tran, H ;
Ross, SE ;
Mostoslavsky, R ;
Cohen, HY ;
Hu, LS ;
Cheng, HL ;
Jedrychowski, MP ;
Gygi, SP ;
Sinclair, DA ;
Alt, FW ;
Greenberg, ME .
SCIENCE, 2004, 303 (5666) :2011-2015
[3]   Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress [J].
Chua, KF ;
Mostoslavsky, R ;
Lombard, DB ;
Pang, WW ;
Saito, S ;
Franco, S ;
Kaushal, D ;
Cheng, HL ;
Fischer, MR ;
Stokes, N ;
Murphy, MM ;
Appella, E ;
Alt, FW .
CELL METABOLISM, 2005, 2 (01) :67-76
[4]   Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase [J].
Cohen, HY ;
Miller, C ;
Bitterman, KJ ;
Wall, NR ;
Hekking, B ;
Kessler, B ;
Howitz, KT ;
Gorospe, M ;
de Cabo, R ;
Sinclair, DA .
SCIENCE, 2004, 305 (5682) :390-392
[5]   High-resolution haplotype structure in the human genome [J].
Daly, MJ ;
Rioux, JD ;
Schaffner, SE ;
Hudson, TJ ;
Lander, ES .
NATURE GENETICS, 2001, 29 (02) :229-232
[6]   Pedigree disequilibrium tests for multilocus haplotypes [J].
Dudbridge, F .
GENETIC EPIDEMIOLOGY, 2003, 25 (02) :115-121
[7]   Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins [J].
Frye, RA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 273 (02) :793-798
[8]   Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity [J].
Frye, RA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 260 (01) :273-279
[9]  
Guarente L, 2000, GENE DEV, V14, P1021
[10]   An integrated system for high throughput TaqMan™ based SNP genotyping [J].
Hampe, J ;
Wollstein, A ;
Lu, T ;
Frevel, HJ ;
Will, M ;
Manaster, C ;
Schreiber, S .
BIOINFORMATICS, 2001, 17 (07) :654-655