A study of particle swarm optimization particle trajectories

被引:1000
作者
van den Bergh, F [1 ]
Engelbrecht, AP [1 ]
机构
[1] Univ Pretoria, Dept Comp Sci, ZA-0002 Pretoria, South Africa
关键词
particle swarm optimization; particle trajectories; equilibrium; convergence;
D O I
10.1016/j.ins.2005.02.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Particle swarm optimization (PSO) has shown to be an efficient, robust and simple optimization algorithm. Most of the PSO Studies are empirical, with only a few theoretical analyses that concentrate on understanding particle trajectories. These theoretical studies concentrate mainly on simplified PSO systems. This paper overviews current theoretical studies, and extend these studies to investigate particle trajectories for general swarms to include the influence of the inertia term. The paper also provides a formal proof that each particle converges to a stable point. An empirical analysis of multidimensional stochastic particles is also presented. Experimental results are provided to support the conclusions drawn from the theoretical findings. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:937 / 971
页数:35
相关论文
共 31 条
[1]  
BEIELSTEIN T, 2002, 12402 U DORTM DEP CO
[2]  
BURDEN RL, 1993, NUMERICAL ANAL, P314
[3]  
Carlisle A., 2001, Proceedings of the Workshop on Particle Swarm Optimization, P1
[4]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[5]  
CLERC M, THINK LOCALLY ACT LO
[6]  
Clerc M., 2002, Proceedings of the 1999 Congress on Evolutionary Computation, DOI DOI 10.1109/CEC.1999.785513
[7]  
Dobbins R., 1996, Computational Intelligence PC Tools
[8]  
Eberhart R, 1995, MHS 95 P 6 INT S MIC, P39, DOI DOI 10.1109/MHS.1995.494215
[9]  
Eberhart R, 2001, P IEEE C EV COMP
[10]  
Eberhart RC, 2000, IEEE C EVOL COMPUTAT, P84, DOI 10.1109/CEC.2000.870279