Synchronization in lattices of coupled oscillators

被引:51
作者
Afraimovich, VS
Chow, SN
Hale, JK
机构
[1] School of Mathematics, Georgia Institute of Technology, Atlanta
来源
PHYSICA D | 1997年 / 103卷 / 1-4期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0167-2789(96)00276-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider coupled nonlinear oscillators with external periodic forces and the Dirichlet boundary conditions. We prove that synchronization occurs provided that the coupling is dissipative and the coupling coefficients are sufficiently large. The synchronization here is of an obvious type - the size of an attractor is comparable to the difference of the subsystems.
引用
收藏
页码:442 / 451
页数:10
相关论文
共 16 条
  • [1] AFRAIMOVICH VS, 1986, SOV RADIOPHYS, V29, P795
  • [2] AFRAIMOVICH VS, 1994, 94202 CDSNS GEORG TE
  • [3] BABIN AV, 1991, ATTRACTORS EVOLUTION
  • [4] SYNCHRONIZATION OF CHAOTIC SYSTEMS - THE EFFECTS OF ADDITIVE NOISE AND DRIFT IN THE DYNAMICS OF THE DRIVING
    BROWN, R
    RULKOV, NF
    TUFILLARO, NB
    [J]. PHYSICAL REVIEW E, 1994, 50 (06) : 4488 - 4508
  • [5] CARROL TL, 1990, PHYS REV LETT, V64, P821
  • [6] SYNCHRONIZING CHAOTIC CIRCUITS
    CARROLL, TL
    PECORA, LM
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04): : 453 - 456
  • [7] Chua L. O., 1993, Journal of Circuits, Systems and Computers, V3, P93, DOI 10.1142/S0218126693000071
  • [8] FABINY L, 1993, PHYS REV A, V47
  • [9] STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS
    FUJISAKA, H
    YAMADA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01): : 32 - 47
  • [10] Hale J., 1988, Asymptotic Behavior of Dissipative Systems