Quantum walks in higher dimensions

被引:197
作者
Mackay, TD [1 ]
Bartlett, SD [1 ]
Stephenson, LT [1 ]
Sanders, BC [1 ]
机构
[1] Macquarie Univ, Dept Phys, Sydney, NSW 2109, Australia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 12期
关键词
D O I
10.1088/0305-4470/35/12/304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyse the quantum walk in higher spatial dimensions and compare classical and quantum spreading as a function of time. Tensor products of Hadamard transformations and the discrete Fourier transform arise as natural extensions of the "quantum coin toss' in the one-dimensional walk simulation, and other illustrative transformations are also investigated. We find that entanglement between the dimensions serves to reduce the rate of spread of the quantum walk. The classical limit is obtained by introducing a random phase variable.
引用
收藏
页码:2745 / 2753
页数:9
相关论文
共 7 条
[1]   QUANTUM RANDOM-WALKS [J].
AHARONOV, Y ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1993, 48 (02) :1687-1690
[2]  
Andris Ambainis, 2001, P 33 ANN ACM S THEOR, P37, DOI DOI 10.1145/380752.380757
[3]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[4]  
Dorit Aharonov, 2001, P 33 ANN ACM S THEOR, P50, DOI DOI 10.1145/380752.380758
[5]   QUANTUM AND CLASSICAL LIOUVILLE DYNAMICS OF THE ANHARMONIC-OSCILLATOR [J].
MILBURN, GJ .
PHYSICAL REVIEW A, 1986, 33 (01) :674-685
[6]  
Moore C., 2001, QUANTUM WALKS HYPERC
[7]   Implementing the quantum random walk [J].
Travaglione, BC ;
Milburn, GJ .
PHYSICAL REVIEW A, 2002, 65 (03) :5