The yeast Hsp110 Sse1 functionally interacts with the Hsp70 chaperones Ssa and Ssb

被引:81
作者
Shaner, L
Wegele, H
Buchner, J
Morano, KA
机构
[1] Univ Texas, Sch Med, Dept Microbiol & Mol Genet, Houston, TX 77030 USA
[2] Roche Diagnost GmbH, Pharma Dev, D-82377 Penzberg, Germany
[3] Tech Univ Munich, Inst Organ Chem & Biochem, D-85757 Garching, Germany
关键词
D O I
10.1074/jbc.M503614200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There is growing evidence that members of the extended Hsp70 family of molecular chaperones, including the Hsp110 and Grp170 subgroups, collaborate in vivo to carry out essential cellular processes. However, relatively little is known regarding the interactions and cellular functions of Sse1, the yeast Hsp110 homolog. Through co-immunoprecipitation analysis, we found that Sse1 forms heterodimeric complexes with the abundant cytosolic Hsp70s Ssa and Ssb in vivo. Furthermore, these complexes can be efficiently reconstituted in vitro using purified proteins. Binding of Ssa or Ssb to Sse1 was mutually exclusive. The ATPase domain of Sse1 was found to be critical for interaction as inactivating point mutations severely reduced interaction with Ssa and Ssb. Sse1 stimulated Ssa1 ATPase activity synergistically with the co-chaperone Ydj1, and stimulation required complex formation. Ssa1 is required for post-translational translocation of the yeast mating pheromone alpha-factor into the endoplasmic reticulum. Like ssa mutants, we demonstrate that sse1 Delta cells accumulate prepro-alpha-factor, but not the co-translationally imported protein Kar2, indicating that interaction between Sse1 and Ssa is functionally significant in vivo. These data suggest that the Hsp110 chaperone operates in concert with Hsp70 in yeast and that this collaboration is required for cellular Hsp70 functions.
引用
收藏
页码:41262 / 41269
页数:8
相关论文
共 44 条
[1]  
Becker J, 1996, MOL CELL BIOL, V16, P4378
[2]   The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct [J].
Brodsky, JL ;
Werner, ED ;
Dubas, ME ;
Goeckeler, JL ;
Kruse, KB ;
McCracken, AA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (06) :3453-3460
[3]   RECONSTITUTION OF PROTEIN TRANSLOCATION FROM SOLUBILIZED YEAST MEMBRANES REVEALS TOPOLOGICALLY DISTINCT ROLES FOR BIP AND CYTOSOLIC HSC70 [J].
BRODSKY, JL ;
HAMAMOTO, S ;
FELDHEIM, D ;
SCHEKMAN, R .
JOURNAL OF CELL BIOLOGY, 1993, 120 (01) :95-102
[4]   HEAT-SHOCK PROTEINS - MOLECULAR CHAPERONES OF PROTEIN BIOGENESIS [J].
CRAIG, EA ;
GAMBILL, BD ;
NELSON, RJ .
MICROBIOLOGICAL REVIEWS, 1993, 57 (02) :402-414
[5]  
CYR DM, 1992, J BIOL CHEM, V267, P20927
[6]  
Easton DP, 2000, CELL STRESS CHAPERON, V5, P276, DOI 10.1379/1466-1268(2000)005<0276:THAGSP>2.0.CO
[7]  
2
[8]   Folding of newly translated proteins in vivo: The role of molecular chaperones [J].
Frydman, J .
ANNUAL REVIEW OF BIOCHEMISTRY, 2001, 70 :603-647
[9]   A functional chaperone triad on the yeast ribosome [J].
Gautschi, M ;
Mun, A ;
Ross, S ;
Rospert, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (07) :4209-4214
[10]   Global analysis of protein expression in yeast [J].
Ghaemmaghami, S ;
Huh, W ;
Bower, K ;
Howson, RW ;
Belle, A ;
Dephoure, N ;
O'Shea, EK ;
Weissman, JS .
NATURE, 2003, 425 (6959) :737-741