Endoplasmic reticulum localization of the low density lipoprotein receptor mediates presecretory degradation of apolipoprotein B

被引:58
作者
Gillian-Daniel, DL
Bates, PW
Tebon, A
Attie, AD [1 ]
机构
[1] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Nutrit Sci, Madison, WI 53706 USA
关键词
D O I
10.1073/pnas.072557199
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mutations in the low density lipoprotein (LDL) receptor (LDLR) cause hypercholesterolemia because of inefficient LDL clearance from the circulation. In addition, there is a paradoxical oversecretion of the metabolic precursor of LDL, very low density lipoprotein (VLDL). We recently demonstrated that the LDLR mediates presecretory degradation of the major VLDL protein, apolipoprotein B (apoB). Kinetic studies suggested that the degradation process is initiated in the secretory pathway. Here, we evaluated the ability of several LDLR variants that are stalled within the secretory pathway to regulate apoB secretion. Both a naturally occurring mutant LDLR and an LDLR consisting of only the ligand-binding domains and a C-terminal endoplasmic reticulum (ER) retention sequence were localized to the ER and not at the cell surface. In the presence of either of the ER-localized LDLRs, apoB secretion was essentially abolished. When the ligand-binding domain of the truncated receptor was mutated the receptor was unable to block apoB secretion, indicating that the inhibition of apoB secretion depends on the ability of the LDLR to bind to its ligand. These findings establish LDLR-mediated pre-secretory apoB degradation as a pathway distinct from reuptake of nascent lipoproteins at the cell surface. The LDLR provides an example of a receptor that modulates export of its ligand from the ER.
引用
收藏
页码:4337 / 4342
页数:6
相关论文
共 39 条
[1]   Integration of endoplasmic reticulum signaling in health and disease [J].
Aridor, M ;
Balch, WE .
NATURE MEDICINE, 1999, 5 (07) :745-751
[2]  
BEISIEGEL U, 1981, J BIOL CHEM, V256, P1923
[3]   The role of the microsomal triglygeride transfer protein in abetalipoproteinemia [J].
Berriot-Varoqueaux, N ;
Aggerbeck, LP ;
Samson-Bouma, ME ;
Wetterau, JR .
ANNUAL REVIEW OF NUTRITION, 2000, 20 :663-697
[4]  
BORCHARDT RA, 1987, J BIOL CHEM, V262, P16394
[5]   Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100 [J].
Borén, J ;
Lee, I ;
Zhu, WM ;
Arnold, K ;
Taylor, S ;
Innerarity, TL .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (05) :1084-1093
[6]   RAP, a novel type of ER chaperone [J].
Bu, GJ ;
Schwartz, AL .
TRENDS IN CELL BIOLOGY, 1998, 8 (07) :272-276
[7]  
CHEN WJ, 1990, J BIOL CHEM, V265, P3116
[8]   OBESE AND DIABETES - 2 MUTANT-GENES CAUSING DIABETES-OBESITY SYNDROMES IN MICE [J].
COLEMAN, DL .
DIABETOLOGIA, 1978, 14 (03) :141-148
[9]   Phosphorylation of tumor necrosis factor receptor CD120a (p55) by p42mapk/erk2 induces changes in its subcellular localization [J].
Cottin, V ;
Van Linden, A ;
Riches, DWH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (46) :32975-32987
[10]   Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver [J].
Davis, RA .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 1999, 1440 (01) :1-31