Alexander invariants of complex hyperplane arrangements

被引:18
作者
Cohen, DC [1 ]
Suciu, AI
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
arrangement; braid monodromy; Alexander invariant; Chen groups;
D O I
10.1090/S0002-9947-99-02206-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an arrangement of n complex hyperplanes. The fundamental group of the complement of A is determined by a braid monodromy homomorphism, alpha : F-s --> P-n. Using the Gassner representation of the pure braid group, we find an explicit presentation for the Alexander invariant of A. From this presentation, we obtain combinatorial lower bounds for the ranks of the Chen groups of A. We also provide a combinatorial criterion for when these lower bounds are attained.
引用
收藏
页码:4043 / 4067
页数:25
相关论文
共 33 条
[21]  
LIBGOBER A, 1986, J REINE ANGEW MATH, V367, P103
[22]  
LIBGOBER A, 1999, J REINE ANGEW MATH
[23]   COMPLETION OF LINK MODULES [J].
MASSEY, WS .
DUKE MATHEMATICAL JOURNAL, 1980, 47 (02) :399-420
[24]   ON A CONJECTURE OF MURASUGI,K. [J].
MASSEY, WS ;
TRALDI, L .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 124 (01) :193-213
[25]  
MORAN S, 1983, N HOLLAND MATH STUD, V82
[26]   ON MILNORS INVARIANT FOR LINKS .2. CHEN GROUP [J].
MURASUGI, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 148 (01) :41-&
[27]  
Orlik P., 1992, GRUNDLEHREN MATH WIS, V300
[28]  
RANDELL R, 1996, TOP APPL, V20, P1
[29]  
RYBNIKOV G, 1994, 9413 DIMACS, P33
[30]   Koszul algebras from graphs and hyperplane arrangements [J].
Shelton, B ;
Yuzvinsky, S .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 56 :477-490