Bifurcation dynamics in discrete-time delayed-feedback control systems

被引:23
作者
Chen, GR [1 ]
Lu, JL
Nicholas, B
Ranganathan, SM
机构
[1] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
[2] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1999年 / 9卷 / 01期
关键词
D O I
10.1142/S021812749900016X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is to report the observation that when the popular time-delayed feedback strategy is used for control purpose, it may actually create unwanted bifurcations. Hopf bifurcation created by delayed feedback control is the main concern of this article, but some other types of bifurcations are also observed to exist in such delayed-feedback control systems. The observations are illustrated by computer simulations.
引用
收藏
页码:287 / 293
页数:7
相关论文
共 19 条
[1]   Stability of periodic orbits controlled by time-delay feedback [J].
Bleich, ME ;
Socolar, JES .
PHYSICS LETTERS A, 1996, 210 (1-2) :87-94
[2]   Controlling spatiotemporal dynamics with time-delay feedback [J].
Bleich, ME ;
Socolar, JES .
PHYSICAL REVIEW E, 1996, 54 (01) :R17-R20
[3]   Feedback control of a quadratic map model of cardiac chaos [J].
Brandt, ME ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (04) :715-723
[4]   Bifurcation control of two nonlinear models of cardiac activity [J].
Brandt, ME ;
Chen, GR .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1997, 44 (10) :1031-1034
[5]   Controlling the dynamical behavior of a circle map model of the human heart [J].
Brandt, ME ;
Chen, GR .
BIOLOGICAL CYBERNETICS, 1996, 74 (01) :1-8
[6]   Autoregressive self-tuning feedback control of the Henon map [J].
Brandt, ME ;
Ademoglu, A ;
Lai, DJ ;
Chen, GR .
PHYSICAL REVIEW E, 1996, 54 (06) :6201-6206
[7]  
Chen G., 1998, CHAOS ORDER METHODOL
[8]  
Chen G., 1999, WILEY ENCY ELECT ELE
[9]  
Glendinning P., 1994, STABILITY INSTABILIT
[10]  
HIKIHARA T, 1996, P INT C NONL BIF CHA