A g-C3N4/BiOBr visible-light-driven composite: synthesis via a reactable ionic liquid and improved photocatalytic activity

被引:175
作者
Di, Jun [1 ]
Xia, Jiexiang [1 ]
Yin, Sheng [1 ]
Xu, Hui [2 ]
He, Minqiang [1 ]
Li, Huaming [1 ]
Xu, Li [3 ]
Jiang, Yuanping [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ, Sch Environm, Zhenjiang 212013, Peoples R China
[3] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
来源
RSC ADVANCES | 2013年 / 3卷 / 42期
基金
中国博士后科学基金;
关键词
GRAPHITIC CARBON NITRIDE; ONE-POT SYNTHESIS; NANOPLATE MICROSPHERES; HYDROGEN-PRODUCTION; ASSISTED SYNTHESIS; CHARGE-TRANSFER; BIOX X; C3N4; ENHANCEMENT; WATER;
D O I
10.1039/c3ra42269k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
g-C3N4/BiOBr composite photocatalysts have been synthesized in the presence of the reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C(16)mim]Br). The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, electrochemical impedance spectroscopy (EIS), and photocurrent analysis. During the reaction process, the ionic liquid [C(16)mim]Br acted as solvent, reactant, template and dispersing agent at the same time, leading the g-C3N4 to disperse well on the surface of the BiOBr flower-like microspheres. The photocatalytic ability of the as-prepared photocatalysts was evaluated using rhodamine B (RhB) as a target pollutant. The photocatalysts exhibited a significantly enhanced photocatalytic performance in the degradation of RhB. The results of PL, EIS, and photocurrent tests indicated that g-C3N4 combined and dispersed well on the surface of BiOBr which facilitated electron-hole separation, and led to the increased photocatalytic activity. The optimal g-C3N4 content for the photocatalytic activity of the g-C3N4/BiOBr composites was determined. Radical trap experiments certified that the hole was the main reactive species for the photocatalytic degradation of RhB. A possible mechanism of g-C3N4 for the enhancement of visible light performance was proposed.
引用
收藏
页码:19624 / 19631
页数:8
相关论文
共 53 条
[1]   Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light [J].
Ai, Zhihui ;
Ho, Wingkei ;
Lee, Shuncheng ;
Zhang, Lizhi .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (11) :4143-4150
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible [J].
Bao, Ningzhong ;
Shen, Liming ;
Takata, Tsuyoshi ;
Domen, Kazunari .
CHEMISTRY OF MATERIALS, 2008, 20 (01) :110-117
[4]   Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties [J].
Bi, Yingpu ;
Ouyang, Shuxin ;
Umezawa, Naoto ;
Cao, Junyu ;
Ye, Jinhua .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (17) :6490-6492
[5]   Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties [J].
Cao, Jing ;
Xu, Benyan ;
Luo, Bangde ;
Lin, Haili ;
Chen, Shifu .
CATALYSIS COMMUNICATIONS, 2011, 13 (01) :63-68
[6]   Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst [J].
Chai, Seung Yong ;
Kim, Yong Joo ;
Jung, Myong Hak ;
Chakraborty, Ashok Kumar ;
Jung, Dongwoon ;
Lee, Wan In .
JOURNAL OF CATALYSIS, 2009, 262 (01) :144-149
[7]   Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light [J].
Chen, Xiufang ;
Zhang, Jinshui ;
Fu, Xianzhi ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) :11658-+
[8]   In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants [J].
Cheng, Hefeng ;
Huang, Baibiao ;
Wang, Peng ;
Wang, Zeyan ;
Lou, Zaizhu ;
Wang, Junpeng ;
Qin, Xiaoyan ;
Zhang, Xiaoyang ;
Dai, Ying .
CHEMICAL COMMUNICATIONS, 2011, 47 (25) :7054-7056
[9]   Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts [J].
Dong, Fan ;
Wu, Liwen ;
Sun, Yanjuan ;
Fu, Min ;
Wu, Zhongbiao ;
Lee, S. C. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (39) :15171-15174
[10]   Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, Electron-Hole Puddle, Interfacial Charge Transfer, and Enhanced Visible Light Response [J].
Du, Aijun ;
Sanvito, Stefano ;
Li, Zhen ;
Wang, Dawei ;
Jiao, Yan ;
Liao, Ting ;
Sun, Qiao ;
Ng, Yun Hau ;
Zhu, Zhonghua ;
Amal, Rose ;
Smith, Sean C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) :4393-4397