Electrochemical Barriers Made Simple

被引:355
作者
Chan, Karen [1 ]
Norskov, Jens K. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2015年 / 6卷 / 14期
关键词
REDUCTION; OXYGEN; 1ST-PRINCIPLES; SURFACE;
D O I
10.1021/acs.jpclett.5b01043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A major challenge in the theoretical treatment of electrochemical charge transfer barriers is that simulations are performed at constant charge, which leads to dramatic potential shifts along the reaction path. Real electrochemical systems, however, operate at constant potential, which corresponds to a hypothetical model system of infinite size. Previous studies of hydrogen evolution have relied on a computationally costly scheme that extrapolates the barriers calculated on increasingly larger cells, and extension of this scheme to more complex reactions would be prohibitively costly. We present a new method to determine constant potential reaction energetics for simple charge transfer reactions that requires only (1) a single barrier calculation in an electrochemical environment and (2) the corresponding surface charge at the initial, transition, and final states. This method allows for a tremendous reduction in the computational resources required to determine electrochemical barriers and paves the way for a rigorous DFT-based kinetic analysis of electrochemical reactions beyond hydrogen evolution.
引用
收藏
页码:2663 / 2668
页数:6
相关论文
共 27 条
  • [1] [Anonymous], HIGHLIGHT 125 THEORY
  • [2] A QUANTUM-THEORY OF MOLECULAR-STRUCTURE AND ITS APPLICATIONS
    BADER, RFW
    [J]. CHEMICAL REVIEWS, 1991, 91 (05) : 893 - 928
  • [3] An object-oriented scripting interface to a legacy electronic structure code
    Bahn, SR
    Jacobsen, KW
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) : 56 - 66
  • [4] Dipole correction for surface supercell calculations
    Bengtsson, L
    [J]. PHYSICAL REVIEW B, 1999, 59 (19): : 12301 - 12304
  • [5] Theoretical Considerations on the Electroreduction of CO to C2 Species on Cu(100) Electrodes
    Calle-Vallejo, Federico
    Koper, Marc T. M.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (28) : 7282 - 7285
  • [6] Dabo Ismaila., 2010, Fuel Cell Science, P415
  • [7] Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method
    Enkovaara, J.
    Rostgaard, C.
    Mortensen, J. J.
    Chen, J.
    Dulak, M.
    Ferrighi, L.
    Gavnholt, J.
    Glinsvad, C.
    Haikola, V.
    Hansen, H. A.
    Kristoffersen, H. H.
    Kuisma, M.
    Larsen, A. H.
    Lehtovaara, L.
    Ljungberg, M.
    Lopez-Acevedo, O.
    Moses, P. G.
    Ojanen, J.
    Olsen, T.
    Petzold, V.
    Romero, N. A.
    Stausholm-Moller, J.
    Strange, M.
    Tritsaris, G. A.
    Vanin, M.
    Walter, M.
    Hammer, B.
    Hakkinen, H.
    Madsen, G. K. H.
    Nieminen, R. M.
    Norskov, J. K.
    Puska, M.
    Rantala, T. T.
    Schiotz, J.
    Thygesen, K. S.
    Jacobsen, K. W.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (25)
  • [8] Unifying Kinetic and Thermodynamic Analysis of 2 e- and 4 e- Reduction of Oxygen on Metal Surfaces
    Hansen, Heine A.
    Viswanathan, Venkatasubramanian
    Norskov, Jens K.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (13) : 6706 - 6718
  • [9] A climbing image nudged elastic band method for finding saddle points and minimum energy paths
    Henkelman, G
    Uberuaga, BP
    Jónsson, H
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) : 9901 - 9904
  • [10] A fast and robust algorithm for Bader decomposition of charge density
    Henkelman, Graeme
    Arnaldsson, Andri
    Jonsson, Hannes
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2006, 36 (03) : 354 - 360