Tutorial: a guide to performing polygenic risk score analyses

被引:1000
作者
Choi, Shing Wan [1 ,2 ]
Mak, Timothy Shin-Heng [3 ]
O'Reilly, Paul F. [1 ,2 ]
机构
[1] Kings Coll London, Inst Psychiat Psychol & Neurosci, MRC Social Genet & Dev Psychiat Ctr, London, England
[2] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[3] Univ Hong Kong, Ctr Genom Sci, Hong Kong, Peoples R China
基金
英国医学研究理事会;
关键词
MENDELIAN RANDOMIZATION; PSYCHIATRIC-DISORDERS; QUALITY-CONTROL; COMPLEX TRAITS; GENOME; PREDICTION; ASSOCIATION; SCHIZOPHRENIA; METAANALYSIS; REGRESSION;
D O I
10.1038/s41596-020-0353-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this review, the authors present comprehensive guidelines for performing and evaluating PRS analyses. This is accompanied by an introductory online tutorial that takes users through quality control and visualization steps. A polygenic score (PGS) or polygenic risk score (PRS) is an estimate of an individual's genetic liability to a trait or disease, calculated according to their genotype profile and relevant genome-wide association study (GWAS) data. While present PRSs typically explain only a small fraction of trait variance, their correlation with the single largest contributor to phenotypic variation-genetic liability-has led to the routine application of PRSs across biomedical research. Among a range of applications, PRSs are exploited to assess shared etiology between phenotypes, to evaluate the clinical utility of genetic data for complex disease and as part of experimental studies in which, for example, experiments are performed that compare outcomes (e.g., gene expression and cellular response to treatment) between individuals with low and high PRS values. As GWAS sample sizes increase and PRSs become more powerful, PRSs are set to play a key role in research and stratified medicine. However, despite the importance and growing application of PRSs, there are limited guidelines for performing PRS analyses, which can lead to inconsistency between studies and misinterpretation of results. Here, we provide detailed guidelines for performing and interpreting PRS analyses. We outline standard quality control steps, discuss different methods for the calculation of PRSs, provide an introductory online tutorial, highlight common misconceptions relating to PRS results, offer recommendations for best practice and discuss future challenges.
引用
收藏
页码:2759 / 2772
页数:14
相关论文
共 105 条
[1]   Polygenic Risk Score, Parental Socioeconomic Status, Family History of Psychiatric Disorders, and the Risk for Schizophrenia A Danish Population-Based Study and Meta-analysis [J].
Agerbo, Esben ;
Sullivan, Patrick F. ;
Vilhjalmsson, Bjarni J. ;
Pedersen, Carsten B. ;
Mors, Ole ;
Borglum, Anders D. ;
Hougaard, David M. ;
Hollegaard, Mads V. ;
Meier, Sandra ;
Mattheisen, Manuel ;
Ripke, Stephan ;
Wray, Naomi R. ;
Mortensen, Preben B. .
JAMA PSYCHIATRY, 2015, 72 (07) :635-641
[2]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[3]   Data quality control in genetic case-control association studies [J].
Anderson, Carl A. ;
Pettersson, Fredrik H. ;
Clarke, Geraldine M. ;
Cardon, Lon R. ;
Morris, Andrew P. ;
Zondervan, Krina T. .
NATURE PROTOCOLS, 2010, 5 (09) :1564-1573
[4]   Accounting for sex in the genome [J].
不详 .
NATURE MEDICINE, 2017, 23 (11) :1243-1243
[5]   Population Structure and Cryptic Relatedness in Genetic Association Studies [J].
Astle, William ;
Balding, David J. .
STATISTICAL SCIENCE, 2009, 24 (04) :451-471
[6]   Polygenic scores: Are they a public health hazard? [J].
Baverstock, Keith .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2019, 149 :4-8
[7]   Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression [J].
Bowden, Jack ;
Smith, George Davey ;
Burgess, Stephen .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) :512-525
[8]   An Expanded View of Complex Traits: From Polygenic to Omnigenic [J].
Boyle, Evan A. ;
Li, Yang I. ;
Pritchard, Jonathan K. .
CELL, 2017, 169 (07) :1177-1186
[9]   An atlas of genetic correlations across human diseases and traits [J].
Bulik-Sullivan, Brendan ;
Finucane, Hilary K. ;
Anttila, Verneri ;
Gusev, Alexander ;
Day, Felix R. ;
Loh, Po-Ru ;
Duncan, Laramie ;
Perry, John R. B. ;
Patterson, Nick ;
Robinson, Elise B. ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (11) :1236-+
[10]   LD Score regression distinguishes confounding from polygenicity in genome-wide association studies [J].
Bulik-Sullivan, Brendan K. ;
Loh, Po-Ru ;
Finucane, Hilary K. ;
Ripke, Stephan ;
Yang, Jian ;
Patterson, Nick ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (03) :291-+