Branching processes and evolution at the ends of a food chain

被引:8
作者
Caldarelli, G
Tebaldi, C
机构
[1] SISSA,ISAS,I-34013 GRIGNANO TRIESTE,TS,ITALY
[2] UNIV PADUA,DIPARTIMENTO FIS,INFM,I-35131 PADUA,ITALY
[3] UNIV PADUA,SEZ INFN,I-35131 PADUA,ITALY
关键词
D O I
10.1103/PhysRevLett.76.4983
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a critically self-organized model of punctuated equilibrium, boundaries determine peculiar scaling of the size distribution of evolutionary avalanches. This is derived by an inhomogeneous generalization of standard branching processes, extending previous mean field descriptions and yielding nu = 1/2 together with tau' = 7/4, as distribution exponent of avalanches starting from species at the ends of a food chain. For the nearest neighbor chain one obtains numerically tau' = 1.25 +/- 0.01, and tau(first) = 1.35 +/- 0.01 for the first return times of activity, again distinct from bulk exponents.
引用
收藏
页码:4983 / 4986
页数:4
相关论文
共 22 条
[1]   MEAN-FIELD EXPONENTS FOR SELF-ORGANIZED CRITICAL PHENOMENA [J].
ALSTROM, P .
PHYSICAL REVIEW A, 1988, 38 (09) :4905-4906
[2]   PUNCTUATED EQUILIBRIUM AND CRITICALITY IN A SIMPLE-MODEL OF EVOLUTION [J].
BAK, P ;
SNEPPEN, K .
PHYSICAL REVIEW LETTERS, 1993, 71 (24) :4083-4086
[3]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[4]   Exact results for spatiotemporal correlations in a self-organized critical model of punctuated equilibrium [J].
Boettcher, S ;
Paczuski, M .
PHYSICAL REVIEW LETTERS, 1996, 76 (03) :348-351
[5]   SIMPLE-MODEL OF SELF-ORGANIZED BIOLOGICAL EVOLUTION [J].
DEBOER, J ;
DERRIDA, B ;
FLYVBJERG, H ;
JACKSON, AD ;
WETTIG, T .
PHYSICAL REVIEW LETTERS, 1994, 73 (06) :906-909
[6]   CRITICALITY IN SIMPLE-MODELS OF EVOLUTION [J].
DEBOER, J ;
JACKSON, AD ;
WETTIG, T .
PHYSICAL REVIEW E, 1995, 51 (02) :1059-1074
[7]   PUNCTUATED EQUILIBRIUM PREVAILS [J].
ELDREDGE, N ;
GOULD, SJ .
NATURE, 1988, 332 (6161) :211-212
[8]  
Feller W., 1971, INTRO PROBABILITY TH
[9]   MEAN-FIELD THEORY FOR A SIMPLE-MODEL OF EVOLUTION [J].
FLYVBJERG, H ;
SNEPPEN, K ;
BAK, P .
PHYSICAL REVIEW LETTERS, 1993, 71 (24) :4087-4090
[10]   GENERALIZED PERCOLATION [J].
HARRIS, AB ;
LUBENSKY, TC .
PHYSICAL REVIEW B, 1981, 24 (05) :2656-2670