Facile synthesis of NiCo2O4 nanorod arrays on Cu conductive substrates as superior anode materials for high-rate Li-ion batteries

被引:125
作者
Liu, Jun [1 ,2 ]
Liu, Chunping [1 ]
Wan, Yanling [1 ]
Liu, Wei [1 ]
Ma, Zengsheng [1 ]
Ji, Shaomin [1 ,3 ]
Wang, Jinbing [1 ]
Zhou, Yichun [1 ]
Hodgson, Peter [2 ]
Li, Yuncang [2 ]
机构
[1] Xiangtan Univ, Key Lab Low Dimens Mat & Applicat Technol, Minist Educ, Fac Mat Optoelect & Phys, Xiangtan 411105, Peoples R China
[2] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3217, Australia
[3] Univ Melbourne, Sch Chem, Parkville, Vic 3010, Australia
来源
CRYSTENGCOMM | 2013年 / 15卷 / 08期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
HIGH-PERFORMANCE ANODE; CATHODE MATERIALS; NANOWIRE ARRAYS; METAL-OXIDE; NEGATIVE-ELECTRODE; LITHIUM BATTERIES; HIGH-CAPACITY; CO3O4; STORAGE; SPINEL;
D O I
10.1039/c2ce26632f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we report a mild and cost-effective solution method to directly grow Ni-substituted Co3O4 (ternary NiCo2O4) nanorod arrays on Cu substrates. Electrochemical impedance spectroscopy (EIS) measurements show that the values of the electrolyte resistance Re and charge-transfer resistance R-ct of NiCo2O4 are 6.8 and 63.5 Omega, respectively, which are significantly lower than those of binary Co3O4 (10.4 and 122.4 Omega). This EIS characterization strongly confirms that the ternary NiCo2O4 anode has much higher electrical conductivity than that of the binary Co3O4 electrode materials, which should greatly enhance the lithium storage performances. Due to the well-aligned 1D nanorod microstructure and a higher electrical conductivity, these ternary NiCo2O4 nanorod arrays manifest high specific capacity, excellent cycling stability (a high reversible capacity of about 830 mA h g(-1) was achieved after 30 cycles at 0.5 C) and high rate capability (787, 695, 512, 254, 127 mA h g(-1) at 1 C, 2 C, 6 C 50 C and 110 C, respectively).
引用
收藏
页码:1578 / 1585
页数:8
相关论文
共 49 条
[1]   NiCo2O4 spinel:: First report on a transition metal oxide for the negative electrode of sodium-ion batteries [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL .
CHEMISTRY OF MATERIALS, 2002, 14 (07) :2847-+
[2]  
APPANDAIRAJAN NK, 1978, P INDIAN ACAD SCI A, V87, P115
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques [J].
Aurbach, D ;
Levi, MD ;
Gamulski, K ;
Markovsky, B ;
Salitra, G ;
Levi, E ;
Heider, U ;
Heider, L ;
Oesten, R .
JOURNAL OF POWER SOURCES, 1999, 81 :472-479
[5]   Cobalt Oxide Nanomaterials by Vapor-Phase Synthesis for Fast and Reversible Lithium Storage [J].
Barreca, D. ;
Cruz-Yusta, M. ;
Gasparotto, A. ;
Maccato, C. ;
Morales, J. ;
Pozza, A. ;
Sada, C. ;
Sanchez, L. ;
Tondello, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (21) :10054-10060
[6]   Controlled vapor-phase synthesis of cobalt oxide nanomaterials with tuned composition and spatial organization [J].
Barreca, Davide ;
Gasparotto, Alberto ;
Lebedev, Oleg I. ;
Maccato, Chiara ;
Pozza, Andrea ;
Tondello, Eugenio ;
Turner, Stuart ;
Van Tendeloo, Gustaaf .
CRYSTENGCOMM, 2010, 12 (07) :2185-2197
[7]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[8]   Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries [J].
Cao, Fei-Fei ;
Deng, Jun-Wen ;
Xin, Sen ;
Ji, Heng-Xing ;
Schmidt, Oliver G. ;
Wan, Li-Jun ;
Guo, Yu-Guo .
ADVANCED MATERIALS, 2011, 23 (38) :4415-+
[9]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[10]   A facile method to improve the high rate capability of Co3O4 nanowire array electrodes [J].
Cheng, Hua ;
Lu, Zhou Guang ;
Deng, Jian Qiu ;
Chung, C. Y. ;
Zhang, Kaili ;
Li, Yang Yang .
NANO RESEARCH, 2010, 3 (12) :895-901