Energy transport in a mesoscopic thermo-hydrodynamics

被引:10
作者
Jou, D [1 ]
Casas-Vázquez, J
Madureira, JR
Vasconcellos, AR
Luzzi, R
机构
[1] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Catalunya, Spain
[2] Univ Estadual Campinas, Inst Fis Gleb Wataghin, UNICAMP, BR-13083970 Campinas, SP, Brazil
[3] Inst Estudis Catalans, E-08001 Barcelona, Catalunya, Spain
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2001年 / 15卷 / 32期
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1142/S021797920100783X
中图分类号
O59 [应用物理学];
学科分类号
摘要
We analyse the question of transport of energy in fluids, done, for specificity, for the case of a system of fermions interacting with a boson system. Resorting to a generalized thermo-hydrodynamics based on a nonequilibrium ensemble formalism, the so-called MaxEnt-NESOM, we derive the equations of evolution for the energy density and its first and second fluxes in a truncated description. We obtain a generalized Fourier's law, relating the flux of energy with extended thermodynamic forces which include contributions of the Guyer-Krumhansl-type. An extended evolution equation for the density of energy is derived, and the conditions when it goes over restricted forms of the type of the telegraphist equation and the traditional Fourier heat diffusion equation are discussed.
引用
收藏
页码:4211 / 4222
页数:12
相关论文
共 23 条
[1]  
[Anonymous], 1974, NONEQUILIBRIUM STAT
[2]   Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices [J].
Chen, G .
PHYSICAL REVIEW B, 1998, 57 (23) :14958-14973
[3]   Foundations and applications of a mesoscopic thermodynamic theory of fast phenomena [J].
Dedeurwaerdere, T ;
CasasVazquez, J ;
Jou, D ;
Lebon, G .
PHYSICAL REVIEW E, 1996, 53 (01) :498-506
[4]   SOLUTION OF LINEARIZED PHONON BOLTZMANN EQUATION [J].
GUYER, RA ;
KRUMHANS.JA .
PHYSICAL REVIEW, 1966, 148 (02) :766-&
[5]   The informational-statistical-entropy operator in a nonequilibrium ensemble formalism [J].
Hassan, SA ;
Vasconcellos, AR ;
Luzzi, R .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 262 (3-4) :359-375
[6]  
HEIMS SP, 1962, REV MOD PHYS, V34, P148
[7]  
Jaynes E.T., 1986, FRONTIERS NONEQUILIB, P33
[8]  
JAYNES ET, 1983, JAYNES PAPERS PROBAB
[9]  
Jou D., 2001, EXTENDED IRREVERSIBL
[10]  
JOU D, 2001, UNPUB HIGHER ORDER H